Suppr超能文献

中风后的躯干训练。

Trunk training following stroke.

机构信息

Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.

Department of Neurorehabilitation, KU Leuven, Leuven, Belgium.

出版信息

Cochrane Database Syst Rev. 2023 Mar 2;3(3):CD013712. doi: 10.1002/14651858.CD013712.pub2.

Abstract

BACKGROUND

Previous systematic reviews and randomised controlled trials have investigated the effect of post-stroke trunk training. Findings suggest that trunk training improves trunk function and activity or the execution of a task or action by an individual. But it is unclear what effect trunk training has on daily life activities, quality of life, and other outcomes.

OBJECTIVES

To assess the effectiveness of trunk training after stroke on activities of daily living (ADL), trunk function, arm-hand function or activity, standing balance, leg function, walking ability, and quality of life when comparing with both dose-matched as non-dose-matched control groups.

SEARCH METHODS

We searched the Cochrane Stroke Group Trials Register, CENTRAL, MEDLINE, Embase, and five other databases to 25 October 2021. We searched trial registries to identify additional relevant published, unpublished, and ongoing trials. We hand searched the bibliographies of included studies.

SELECTION CRITERIA

We selected randomised controlled trials comparing trunk training versus non-dose-matched or dose-matched control therapy including adults (18 years or older) with either ischaemic or haemorrhagic stroke. Outcome measures of trials included ADL, trunk function, arm-hand function or activity, standing balance, leg function, walking ability, and quality of life.

DATA COLLECTION AND ANALYSIS

We used standard methodological procedures expected by Cochrane. Two main analyses were carried out. The first analysis included trials where the therapy duration of control intervention was non-dose-matched with the therapy duration of the experimental group and the second analysis where there was comparison with a dose-matched control intervention (equal therapy duration in both the control as in the experimental group).  MAIN RESULTS: We included 68 trials with a total of 2585 participants. In the analysis of the non-dose-matched groups (pooling of all trials with different training duration in the experimental as in the control intervention), we could see that trunk training had a positive effect on ADL (standardised mean difference (SMD) 0.96; 95% confidence interval (CI) 0.69 to 1.24; P < 0.001; 5 trials; 283 participants; very low-certainty evidence), trunk function (SMD 1.49, 95% CI 1.26 to 1.71; P < 0.001; 14 trials, 466 participants; very low-certainty evidence), arm-hand function (SMD 0.67, 95% CI 0.19 to 1.15; P = 0.006; 2 trials, 74 participants; low-certainty evidence), arm-hand activity (SMD 0.84, 95% CI 0.009 to 1.59; P = 0.03; 1 trial, 30 participants; very low-certainty evidence), standing balance (SMD 0.57, 95% CI 0.35 to 0.79; P < 0.001; 11 trials, 410 participants; very low-certainty evidence), leg function (SMD 1.10, 95% CI 0.57 to 1.63; P < 0.001; 1 trial, 64 participants; very low-certainty evidence), walking ability (SMD 0.73, 95% CI 0.52 to 0.94; P < 0.001; 11 trials, 383 participants; low-certainty evidence) and quality of life (SMD 0.50, 95% CI 0.11 to 0.89; P = 0.01; 2 trials, 108 participants; low-certainty evidence). Non-dose-matched trunk training led to no difference for the outcome serious adverse events (odds ratio: 7.94, 95% CI 0.16 to 400.89; 6 trials, 201 participants; very low-certainty evidence). In the analysis of the dose-matched groups (pooling of all trials with equal training duration in the experimental as in the control intervention), we saw that trunk training had a positive effect on trunk function (SMD 1.03, 95% CI 0.91 to 1.16; P < 0.001; 36 trials, 1217 participants; very low-certainty evidence), standing balance (SMD 1.00, 95% CI 0.86 to 1.15; P < 0.001; 22 trials, 917 participants; very low-certainty evidence), leg function (SMD 1.57, 95% CI 1.28 to 1.87; P < 0.001; 4 trials, 254 participants; very low-certainty evidence), walking ability (SMD 0.69, 95% CI 0.51 to 0.87; P < 0.001; 19 trials, 535 participants; low-certainty evidence) and quality of life (SMD 0.70, 95% CI 0.29 to 1.11; P < 0.001; 2 trials, 111 participants; low-certainty evidence), but not for ADL (SMD 0.10; 95% confidence interval (CI) -0.17 to 0.37; P = 0.48; 9 trials; 229 participants; very low-certainty evidence), arm-hand function (SMD 0.76, 95% CI -0.18 to 1.70; P = 0.11; 1 trial, 19 participants; low-certainty evidence), arm-hand activity (SMD 0.17, 95% CI -0.21 to 0.56; P = 0.38; 3 trials, 112 participants; very low-certainty evidence). Trunk training also led to no difference for the outcome serious adverse events (odds ratio (OR): 7.39, 95% CI 0.15 to 372.38; 10 trials, 381 participants; very low-certainty evidence). Time post stroke led to a significant subgroup difference for standing balance (P < 0.001) in non-dose-matched therapy. In non-dose-matched therapy, different trunk therapy approaches had a significant effect on ADL (< 0.001), trunk function (P < 0.001) and standing balance (< 0.001). When participants received dose-matched therapy, analysis of subgroup differences showed that the trunk therapy approach had a significant effect on ADL (P = 0.001), trunk function (P < 0.001), arm-hand activity (P < 0.001), standing balance (P = 0.002), and leg function (P = 0.002). Also for dose-matched therapy, subgroup analysis for time post stroke resulted in a significant difference for the outcomes standing balance (P < 0.001), walking ability (P = 0.003) and leg function (P < 0.001), time post stroke significantly modified the effect of intervention.  Core-stability trunk (15 trials), selective-trunk (14 trials) and unstable-trunk (16 trials) training approaches were mostly applied in the included trials.

AUTHORS' CONCLUSIONS: There is evidence to suggest that trunk training as part of rehabilitation improves ADL, trunk function, standing balance, walking ability, upper and lower limb function, and quality of life in people after stroke. Core-stability, selective-, and unstable-trunk training were the trunk training approaches mostly applied in the included trials. When considering only trials with a low risk of bias, results were mostly confirmed, with very low to moderate certainty, depending on the outcome.

摘要

背景

先前的系统评价和随机对照试验已经研究了卒中后躯干训练的效果。研究结果表明,躯干训练可改善躯干功能和活动,或个体的任务或动作的执行。但是,躯干训练对日常生活活动、生活质量和其他结果的影响尚不清楚。

目的

评估卒中后躯干训练对日常生活活动(ADL)、躯干功能、上肢和手功能或活动、站立平衡、下肢功能、步行能力以及生活质量的有效性,将其与剂量匹配和非剂量匹配的对照组进行比较。

检索方法

我们检索了 Cochrane 卒中组试验注册库、CENTRAL、MEDLINE、Embase 和其他五个数据库,检索时间截至 2021 年 10 月 25 日。我们还检索了试验注册库以确定其他相关的已发表、未发表和正在进行的试验。我们还手动检索了纳入研究的参考文献。

选择标准

我们选择了比较躯干训练与非剂量匹配或剂量匹配对照组的随机对照试验,纳入对象为年龄在 18 岁或以上的缺血性或出血性卒中患者。试验的结局指标包括 ADL、躯干功能、上肢和手功能或活动、站立平衡、下肢功能、步行能力和生活质量。

数据收集和分析

我们使用 Cochrane 预期的标准方法进行了数据分析。我们进行了两项主要分析。第一项分析包括治疗持续时间非剂量匹配的试验,将对照组和实验组的治疗持续时间进行比较;第二项分析包括与剂量匹配的对照组进行比较(实验组和对照组的治疗持续时间相等)。

主要结果

我们纳入了 68 项试验,共计 2585 名参与者。在非剂量匹配组的分析中(对所有试验中实验组和对照组的训练持续时间不同的情况进行汇总分析),我们发现躯干训练对 ADL(标准化均数差(SMD)0.96;95%置信区间(CI)0.69 至 1.24;P < 0.001;5 项试验;283 名参与者;极低确定性证据)、躯干功能(SMD 1.49;95% CI 1.26 至 1.71;P < 0.001;14 项试验;466 名参与者;极低确定性证据)、上肢和手功能(SMD 0.67;95% CI 0.19 至 1.15;P = 0.006;2 项试验;74 名参与者;低确定性证据)、上肢和手活动(SMD 0.84;95% CI 0.009 至 1.59;P = 0.03;1 项试验;30 名参与者;极低确定性证据)、站立平衡(SMD 0.57;95% CI 0.35 至 0.79;P < 0.001;11 项试验;410 名参与者;极低确定性证据)、下肢功能(SMD 1.10;95% CI 0.57 至 1.63;P < 0.001;1 项试验;64 名参与者;极低确定性证据)、步行能力(SMD 0.73;95% CI 0.52 至 0.94;P < 0.001;11 项试验;383 名参与者;低确定性证据)和生活质量(SMD 0.50;95% CI 0.11 至 0.89;P = 0.01;2 项试验;108 名参与者;低确定性证据)有积极影响。非剂量匹配的躯干训练对严重不良事件的结局(比值比:7.94;95% CI 0.16 至 400.89;6 项试验;201 名参与者;极低确定性证据)没有差异。在剂量匹配组的分析中(对所有试验中实验组和对照组的训练持续时间相等的情况进行汇总分析),我们发现躯干训练对躯干功能(SMD 1.03;95% CI 0.91 至 1.16;P < 0.001;36 项试验;1217 名参与者;极低确定性证据)、站立平衡(SMD 1.00;95% CI 0.86 至 1.15;P < 0.001;22 项试验;917 名参与者;极低确定性证据)、下肢功能(SMD 1.57;95% CI 1.28 至 1.87;P < 0.001;4 项试验;254 名参与者;极低确定性证据)、步行能力(SMD 0.69;95% CI 0.51 至 0.87;P < 0.001;19 项试验;535 名参与者;低确定性证据)和生活质量(SMD 0.70;95% CI 0.29 至 1.11;P < 0.001;2 项试验;111 名参与者;低确定性证据)有积极影响,但对 ADL(SMD 0.10;95% 置信区间(CI)-0.17 至 0.37;P = 0.48;9 项试验;229 名参与者;极低确定性证据)、上肢和手功能(SMD 0.76;95% CI -0.18 至 1.70;P = 0.11;1 项试验;19 名参与者;低确定性证据)和上肢和手活动(SMD 0.17;95% CI -0.21 至 0.56;P = 0.38;3 项试验;112 名参与者;极低确定性证据)没有影响。躯干训练对严重不良事件的结局(比值比(OR)7.39;95% CI 0.15 至 372.38;10 项试验;381 名参与者;极低确定性证据)也没有差异。卒中后时间导致站立平衡(P < 0.001)的亚组差异有显著统计学意义。在非剂量匹配的治疗中,不同的躯干治疗方法对 ADL(P < 0.001)、躯干功能(P < 0.001)和站立平衡(P < 0.001)有显著影响。当参与者接受剂量匹配的治疗时,亚组差异分析显示,躯干治疗方法对 ADL(P = 0.001)、躯干功能(P < 0.001)、上肢和手活动(P < 0.001)、站立平衡(P = 0.002)和下肢功能(P = 0.002)有显著影响。对于剂量匹配的治疗,卒中后时间的亚组分析对站立平衡(P < 0.001)、步行能力(P = 0.003)和下肢功能(P < 0.001)的结局有显著影响,时间后卒中显著改变了干预的效果。核心稳定性躯干(15 项试验)、选择性躯干(14 项试验)和不稳定躯干(16 项试验)训练方法主要应用于纳入的试验中。

作者结论

有证据表明,躯干训练作为康复的一部分,可改善卒中后患者的日常生活活动、躯干功能、站立平衡、步行能力、上下肢功能和生活质量。核心稳定性、选择性和不稳定躯干训练是纳入试验中应用最多的躯干训练方法。当只考虑低偏倚风险的试验时,结果大多得到证实,具有极低到中等确定性,具体取决于结局。

相似文献

1
Trunk training following stroke.中风后的躯干训练。
Cochrane Database Syst Rev. 2023 Mar 2;3(3):CD013712. doi: 10.1002/14651858.CD013712.pub2.
5
Caregiver-mediated exercises for improving outcomes after stroke.照顾者介导的运动对改善中风后的预后情况
Cochrane Database Syst Rev. 2016 Dec 21;12(12):CD011058. doi: 10.1002/14651858.CD011058.pub2.
9
Repetitive task training for improving functional ability after stroke.中风后通过重复任务训练改善功能能力
Cochrane Database Syst Rev. 2016 Nov 14;11(11):CD006073. doi: 10.1002/14651858.CD006073.pub3.
10
Occupational therapy for cognitive impairment in stroke patients.脑卒中患者认知障碍的作业治疗。
Cochrane Database Syst Rev. 2022 Mar 29;3(3):CD006430. doi: 10.1002/14651858.CD006430.pub3.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验