Suppr超能文献

听觉人工网络与大量个体功能磁共振成像脑数据的对齐可带来大脑编码及下游任务方面的普遍改善。

Alignment of auditory artificial networks with massive individual fMRI brain data leads to generalisable improvements in brain encoding and downstream tasks.

作者信息

Freteault Maëlle, Le Clei Maximilien, Tetrel Loic, Bellec Lune, Farrugia Nicolas

机构信息

Université de Montréal, Montréal, QC, Canada.

Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada.

出版信息

Imaging Neurosci (Camb). 2025 Apr 8;3. doi: 10.1162/imag_a_00525. eCollection 2025.

Abstract

Artificial neural networks trained in the field of artificial intelligence (AI) have emerged as key tools to model brain processes, sparking the idea of aligning network representations with brain dynamics to enhance performance on AI tasks. While this concept has gained support in the visual domain, we investigate here the feasibility of creating auditory artificial neural models directly aligned with individual brain activity. This objective raises major computational challenges, as models have to be trained directly with brain data, which is typically collected at a much smaller scale than data used to train AI models. We aimed to answer two key questions: (1) Can brain alignment of auditory models lead to improved brain encoding for novel, previously unseen stimuli? (2) Can brain alignment lead to generalisable representations of auditory signals that are useful for solving a variety of complex auditory tasks? To answer these questions, we relied on two massive datasets: a deep phenotyping dataset from the Courtois neuronal modelling project, where six subjects watched four seasons (36 h) of theTV series in functional magnetic resonance imaging and the HEAR benchmark, a large battery of downstream auditory tasks. We fine-tuned SoundNet, a small pretrained convolutional neural network with ~2.5 M parameters. Aligning SoundNet with brain data from three seasons ofled to substantial improvement in brain encoding in the fourth season, extending beyond auditory and visual cortices. We also observed consistent performance gains on the HEAR benchmark, particularly for tasks with limited training data, where brain-aligned models performed comparably with the best-performing models regardless of size. We finally compared individual and group models, finding that individual models often matched or outperformed group models in both brain encoding and downstream task performance, highlighting the data efficiency of fine-tuning with individual brain data. Our results demonstrate the feasibility of aligning artificial neural network representations with individual brain activity during auditory processing, and suggest that this alignment is particularly beneficial for tasks with limited training data. Future research is needed to establish whether larger models can achieve even better performance and whether the observed gains extend to other tasks, particularly in the context of few-shot learning.

摘要

在人工智能(AI)领域训练的人工神经网络已成为模拟大脑过程的关键工具,引发了将网络表征与大脑动态对齐以提高AI任务性能的想法。虽然这一概念在视觉领域已获得支持,但我们在此研究直接与个体大脑活动对齐创建听觉人工神经模型的可行性。这一目标带来了重大的计算挑战,因为模型必须直接用大脑数据进行训练,而大脑数据的收集规模通常比用于训练AI模型的数据小得多。我们旨在回答两个关键问题:(1)听觉模型与大脑对齐能否改善对新的、以前未见过的刺激的大脑编码?(2)大脑对齐能否导致对听觉信号的通用表征,从而有助于解决各种复杂的听觉任务?为了回答这些问题,我们依赖于两个大规模数据集:来自库尔图瓦神经元建模项目的深度表型数据集,其中六名受试者在功能磁共振成像中观看了四季(36小时)的电视剧,以及HEAR基准测试,这是一系列大量的下游听觉任务。我们对SoundNet进行了微调,SoundNet是一个具有约250万个参数的小型预训练卷积神经网络。将SoundNet与来自三季的大脑数据对齐,导致第四季大脑编码有了显著改善,范围超出了听觉和视觉皮层。我们还在HEAR基准测试中观察到一致的性能提升,特别是对于训练数据有限的任务,其中与大脑对齐的模型在性能上与最佳性能模型相当,无论其大小如何。我们最后比较了个体模型和组模型,发现个体模型在大脑编码和下游任务性能方面通常与组模型相当或更优,突出了用个体大脑数据进行微调的数据效率。我们的结果证明了在听觉处理过程中将人工神经网络表征与个体大脑活动对齐的可行性,并表明这种对齐对于训练数据有限的任务特别有益。未来需要进行研究,以确定更大的模型是否能实现更好的性能,以及观察到的性能提升是否能扩展到其他任务,特别是在少样本学习的背景下。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验