Suppr超能文献

荷兰不同种族和社会经济背景人群中的SCORE2心血管风险预测模型:一项外部验证研究

SCORE2 cardiovascular risk prediction models in an ethnic and socioeconomic diverse population in the Netherlands: an external validation study.

作者信息

Kist Janet M, Vos Rimke C, Mairuhu Albert T A, Struijs Jeroen N, van Peet Petra G, Vos Hedwig M M, van Os Hendrikus J A, Beishuizen Edith D, Sijpkens Yvo W J, Faiq Mohammad A, Numans Mattijs E, Groenwold Rolf H H

机构信息

Health Campus The Hague, Leiden University Medical Centre, The Hague, The Netherlands.

Department of Internal Medicine, HAGA Teaching Hospital, The Hague, The Netherlands.

出版信息

EClinicalMedicine. 2023 Feb 16;57:101862. doi: 10.1016/j.eclinm.2023.101862. eCollection 2023 Mar.

Abstract

BACKGROUND

Socioeconomic status and ethnicity are not explicitly incorporated as risk factors in the four SCORE2 cardiovascular disease (CVD) risk models developed for country-wide implementation across Europe (low, moderate, high and very-high model). The aim of this study was to evaluate the performance of the four SCORE2 CVD risk prediction models in an ethnic and socioeconomic diverse population in the Netherlands.

METHODS

The SCORE2 CVD risk models were externally validated in socioeconomic and ethnic (by country of origin) subgroups, from a population-based cohort in the Netherlands, with GP, hospital and registry data. In total 155,000 individuals, between 40 and 70 years old in the study period from 2007 to 2020 and without previous CVD or diabetes were included. Variables (age, sex, smoking status, blood pressure, cholesterol) and outcome first CVD event (stroke, myocardial infarction, CVD death) were consistent with SCORE2.

FINDINGS

6966 CVD events were observed, versus 5495 events predicted by the CVD low-risk model (intended for use in the Netherlands). Relative underprediction was similar in men and women (observed/predicted (OE-ratio), 1.3 and 1.2 in men and women, respectively). Underprediction was larger in low socioeconomic subgroups of the overall study population (OE-ratio 1.5 and 1.6 in men and women, respectively), and comparable in Dutch and the combined "other ethnicities" low socioeconomic subgroups. Underprediction in the Surinamese subgroup was largest (OE-ratio 1.9, in men and women), particularly in the low socioeconomic Surinamese subgroups (OE-ratio 2.5 and 2.1 in men and women). In the subgroups with underprediction in the low-risk model, the intermediate or high-risk SCORE2 models showed improved OE-ratios. Discrimination showed moderate performance in all subgroups and the four SCORE2 models, with C-statistics between 0.65 and 0.72, similar to the SCORE2 model development study.

INTERPRETATION

The SCORE 2 CVD risk model for low-risk countries (as the Netherlands are) was found to underpredict CVD risk, particularly in low socioeconomic and Surinamese ethnic subgroups. Including socioeconomic status and ethnicity as predictors in CVD risk models and implementing CVD risk adjustment within countries is desirable for adequate CVD risk prediction and counselling.

FUNDING

Leiden University Medical Centre and Leiden University.

摘要

背景

社会经济地位和种族并未被明确纳入为在欧洲各国广泛应用而开发的四个SCORE2心血管疾病(CVD)风险模型(低风险、中风险、高风险和极高风险模型)的风险因素中。本研究的目的是评估四个SCORE2 CVD风险预测模型在荷兰一个种族和社会经济背景多样的人群中的表现。

方法

利用荷兰一项基于人群的队列研究中的全科医生(GP)、医院和登记数据,在社会经济和种族(按原籍国划分)亚组中对SCORE2 CVD风险模型进行外部验证。研究纳入了2007年至2020年期间年龄在40至70岁之间、既往无CVD或糖尿病的总共155,000名个体。变量(年龄、性别、吸烟状况、血压、胆固醇)和结局首次CVD事件(中风、心肌梗死、CVD死亡)与SCORE2一致。

研究结果

观察到6966例CVD事件,而CVD低风险模型( intended for use in the Netherlands)预测的事件为5495例。男性和女性的相对预测不足相似(观察值/预测值(OE比率),男性和女性分别为1.3和1.2)。总体研究人群中低社会经济亚组的预测不足更大(男性和女性的OE比率分别为1.5和1.6),荷兰和合并的“其他种族”低社会经济亚组的情况相当。苏里南人群亚组的预测不足最大(男性和女性的OE比率为1.9),尤其是低社会经济的苏里南人群亚组(男性和女性的OE比率分别为2.5和2.1)。在低风险模型预测不足的亚组中,中风险或高风险的SCORE2模型显示出改善的OE比率。所有亚组和四个SCORE2模型的辨别力表现中等,C统计量在0.65至0.72之间,与SCORE2模型开发研究相似。

解读

发现适用于低风险国家(如荷兰)的SCORE 2 CVD风险模型对CVD风险预测不足,特别是在低社会经济和苏里南种族亚组中。在CVD风险模型中纳入社会经济地位和种族作为预测因素,并在各国实施CVD风险调整,对于充分的CVD风险预测和咨询是可取的。

资助

莱顿大学医学中心和莱顿大学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d647/9971516/6c90a45e8e05/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验