Kummerfeld Erich, Jones Galin L
Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States.
School of Statistics, University of Minnesota, Minneapolis, MN, United States.
Front Psychol. 2023 Feb 14;14:1094150. doi: 10.3389/fpsyg.2023.1094150. eCollection 2023.
Researchers routinely face choices throughout the data analysis process. It is often opaque to readers how these choices are made, how they affect the findings, and whether or not data analysis results are unduly influenced by subjective decisions. This concern is spurring numerous investigations into the variability of data analysis results. The findings demonstrate that different teams analyzing the same data may reach different conclusions. This is the "many-analysts" problem. Previous research on the many-analysts problem focused on demonstrating its existence, without identifying specific practices for solving it. We address this gap by identifying three pitfalls that have contributed to the variability observed in many-analysts publications and providing suggestions on how to avoid them.
研究人员在整个数据分析过程中经常面临选择。读者通常不清楚这些选择是如何做出的,它们如何影响研究结果,以及数据分析结果是否受到主观决策的过度影响。这种担忧促使人们对数据分析结果的可变性进行了大量调查。研究结果表明,不同的团队分析相同的数据可能会得出不同的结论。这就是“多分析师”问题。先前关于“多分析师”问题的研究主要集中在证明其存在,而没有确定解决该问题的具体方法。我们通过识别导致多分析师出版物中观察到的可变性的三个陷阱,并就如何避免这些陷阱提供建议,来填补这一空白。