Suppr超能文献

用于分析非小细胞肺癌手术患者无病生存期的计算机断层扫描影像组学、临床及肿瘤免疫特征的综合列线图

Integrative Nomogram of Computed Tomography Radiomics, Clinical, and Tumor Immune Features for Analysis of Disease-Free Survival of NSCLC Patients with Surgery.

作者信息

Xiu Dianhui, Mo Yan, Liu Chaohui, Hu Yu, Wang Yanjing, Zhao Yiming, Guo Tiantian, Cheng Kailiang, Huang Chencui, Liu Lin, Cheng Min

机构信息

Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130021, China.

Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co. Ltd., Beijing 100080, China.

出版信息

J Oncol. 2023 Feb 21;2023:8607062. doi: 10.1155/2023/8607062. eCollection 2023.

Abstract

To improve prognosis of cancer patients and determine the integrative value for analysis of disease-free survival prediction, a clinic investigation was performed involving with 146 non-small cell lung cancer (NSCLC) patients (83 men and 73 women; mean age: 60.24 years ± 8.637) with a history of surgery. Their computed tomography (CT) radiomics, clinical records, and tumor immune features were firstly obtained and analyzed in this study. Histology and immunohistochemistry were also performed to establish a multimodal nomogram through the fitting model and cross-validation. Finally, Z test and decision curve analysis (DCA) were performed to evaluate and compare the accuracy and difference of each model. In all, seven radiomics features were selected to construct the radiomics score model. The clinicopathological and immunological factors model, including T stage, N stage, microvascular invasion, smoking quantity, family history of cancer, and immunophenotyping. The C-index of the comprehensive nomogram model on the training set and test set was 0.8766 and 0.8426 respectively, which was better than that of the clinicopathological-radiomics model (Z test, P =0.041<0.05), radiomics model and clinicopathological model (Z test, P =0.013<0.05 and P =0.0097<0.05). Integrative nomogram based on computed tomography radiomics, clinical and immunophenotyping can be served as effective imaging biomarker to predict DFS of hepatocellular carcinoma after surgical resection.

摘要

为改善癌症患者的预后并确定无病生存预测分析的综合价值,开展了一项临床研究,纳入146例有手术史的非小细胞肺癌(NSCLC)患者(83例男性和73例女性;平均年龄:60.24岁±8.637)。本研究首先获取并分析了他们的计算机断层扫描(CT)影像组学、临床记录和肿瘤免疫特征。还进行了组织学和免疫组织化学检查,通过拟合模型和交叉验证建立多模态列线图。最后,进行Z检验和决策曲线分析(DCA)以评估和比较各模型的准确性及差异。总共选择了7个影像组学特征来构建影像组学评分模型。临床病理和免疫因素模型包括T分期、N分期、微血管侵犯、吸烟量、癌症家族史和免疫表型分析。综合列线图模型在训练集和测试集上的C指数分别为0.8766和0.8426,优于临床病理-影像组学模型(Z检验,P =0.041<0.05)、影像组学模型和临床病理模型(Z检验,P =0.013<0.05和P =0.0097<0.05)。基于计算机断层扫描影像组学、临床和免疫表型分析的综合列线图可作为预测肝细胞癌手术切除后无病生存期的有效影像生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe07/9974282/1506a6632c07/JO2023-8607062.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验