Suppr超能文献

用于光声成像系统的信号恢复算法。

Signal restoration algorithm for photoacoustic imaging systems.

作者信息

Hakakzadeh Soheil, Amjadian Mohammadreza, Zhang Yachao, Mostafavi Seyed Masood, Kavehvash Zahra, Wang Lidai

机构信息

Electrical Engineering Department of Sharif University of Technology, Tehran, Iran.

Equal Contribution.

出版信息

Biomed Opt Express. 2023 Jan 5;14(2):651-666. doi: 10.1364/BOE.480842. eCollection 2023 Feb 1.

Abstract

In a photoacoustic (PA) imaging system, the detectors are bandwidth-limited. Therefore, they capture PA signals with some unwanted ripples. This limitation degrades the resolution/contrast and induces sidelobes and artifacts in the reconstructed images along the axial direction. To compensate for the limited bandwidth effect, we present a PA signal restoration algorithm, where a mask is designed to extract the signals at the absorber positions and remove the unwanted ripples. This restoration improves the axial resolution and contrast in the reconstructed image. The restored PA signals can be considered as the input of the conventional reconstruction algorithms (e.g., Delay-and-sum (DAS) and Delay-multiply-and-sum (DMAS)). To compare the performance of the proposed method, DAS and DMAS reconstruction algorithms were performed with both the initial and restored PA signals on numerical and experimental studies (numerical targets, tungsten wires, and human forearm). The results show that, compared with the initial PA signals, the restored PA signals can improve the axial resolution and contrast by 45% and 16.1 dB, respectively, and suppress background artifacts by 80%.

摘要

在光声(PA)成像系统中,探测器存在带宽限制。因此,它们采集到的光声信号带有一些不需要的波纹。这种限制会降低分辨率/对比度,并在重建图像的轴向方向上产生旁瓣和伪影。为了补偿有限带宽效应,我们提出了一种光声信号恢复算法,其中设计了一个掩码来提取吸收体位置处的信号并去除不需要的波纹。这种恢复提高了重建图像的轴向分辨率和对比度。恢复后的光声信号可被视为传统重建算法(如延迟求和(DAS)和延迟相乘求和(DMAS))的输入。为了比较所提方法的性能,在数值和实验研究(数值目标、钨丝和人体前臂)中,分别使用初始光声信号和恢复后的光声信号执行了DAS和DMAS重建算法。结果表明,与初始光声信号相比,恢复后的光声信号可分别将轴向分辨率和对比度提高45%和16.1 dB,并将背景伪影抑制80%。

相似文献

1
Signal restoration algorithm for photoacoustic imaging systems.用于光声成像系统的信号恢复算法。
Biomed Opt Express. 2023 Jan 5;14(2):651-666. doi: 10.1364/BOE.480842. eCollection 2023 Feb 1.
2
10
Subaperture Processing-Based Adaptive Beamforming for Photoacoustic Imaging.基于子孔径处理的自适应光束形成用于光声成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2336-2350. doi: 10.1109/TUFFC.2021.3060371. Epub 2021 Jun 29.

本文引用的文献

6
Optoacoustic imaging of the skin.皮肤的光声成像。
Exp Dermatol. 2021 Nov;30(11):1598-1609. doi: 10.1111/exd.14386. Epub 2021 May 31.
7
Another decade of photoacoustic imaging.又一个十年的光声成像。
Phys Med Biol. 2021 Feb 26;66(5). doi: 10.1088/1361-6560/abd669.
9
Spatiotemporal Coherence Weighting for In Vivo Cardiac Photoacoustic Image Beamformation.用于体内心脏光声图像波束形成的时空相干加权。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):586-598. doi: 10.1109/TUFFC.2020.3016900. Epub 2021 Feb 25.
10
Model-Based Reconstruction of Large Three-Dimensional Optoacoustic Datasets.基于模型的大三维光声数据集重建。
IEEE Trans Med Imaging. 2020 Sep;39(9):2931-2940. doi: 10.1109/TMI.2020.2981835. Epub 2020 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验