Suppr超能文献

基于人群的有害藻华预警的可用性和接受度。

Usability and acceptance of crowd-based early warning of harmful algal blooms.

机构信息

Faculty of Information Technology, University of Nusa Mandiri, Jakarta, Indonesia.

Research Center for Data and Information Sciences, National Research and Innovation Agency, Bandung, Indonesia.

出版信息

PeerJ. 2023 Mar 1;11:e14923. doi: 10.7717/peerj.14923. eCollection 2023.

Abstract

Crowdsensing has become an alternative solution to physical sensors and apparatuses. Utilizing citizen science communities is undoubtedly a much cheaper solution. However, similar to other participatory-based applications, the willingness of community members to be actively involved is paramount to the success of implementation. This research investigated factors that affect the continual use intention of a crowd-based early warning system (CBEWS) to mitigate harmful algal blooms (HABs). This study applied the partial least square-structural equation modeling (PLS-SEM) using an augmented technology acceptance model (TAM). In addition to the native TAM variables, such as perceived ease of use and usefulness as well as attitude, other factors, including awareness, social influence, and reward, were also studied. Furthermore, the usability factor was examined, specifically using the System Usability Scale (SUS) score as a determinant. Results showed that usability positively affected the perceived ease of use. Moreover, perceived usefulness and awareness influenced users' attitudes toward using CBEWS. Meanwhile, the reward had no significant effects on continual use intention.

摘要

众包已经成为物理传感器和设备的一种替代解决方案。利用公民科学社区无疑是一个更便宜的解决方案。然而,与其他基于参与的应用程序一样,社区成员积极参与的意愿对于实施的成功至关重要。本研究调查了影响基于众包的早期预警系统(CBEWS)持续使用意图以减轻有害藻华(HAB)的因素。本研究应用了偏最小二乘结构方程模型(PLS-SEM),并使用了增强的技术接受模型(TAM)。除了感知易用性和有用性以及态度等原生 TAM 变量外,还研究了其他因素,包括意识、社会影响和奖励。此外,还检查了可用性因素,具体使用系统可用性量表(SUS)得分作为决定因素。结果表明,可用性正向影响感知易用性。此外,感知有用性和意识影响用户对使用 CBEWS 的态度。而奖励对持续使用意图没有显著影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4797/9985416/58c43227266e/peerj-11-14923-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验