Suppr超能文献

无模板法合成具有分级核壳结构的磷掺杂 g-C<sub>3</sub>N<sub>4</sub>微管用于高效可见光响应催化。

Template-Free Synthesis of Phosphorus-Doped g-C N Micro-Tubes with Hierarchical Core-Shell Structure for High-Efficient Visible Light Responsive Catalysis.

机构信息

College of Materials Science & Engineering, Nanjing Tech University, 30 South PuZhu Road, Nanjing, Jiangsu, 211816, China.

Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South PuZhu Road, Nanjing, Jiangsu, 211816, China.

出版信息

Small. 2023 Jun;19(23):e2208254. doi: 10.1002/smll.202208254. Epub 2023 Mar 8.

Abstract

This work reports a new form of tubular g-C N that is featured with a hierarchical core-shell structure introduced with phosphorous elements and nitrogen vacancies. The core is self-arranged with randomly stacked g-C N ultra-thin nanosheets along the axial direction. This unique structure significantly benefits electron/hole separation and visible-light harvesting. A superior performance for the photodegradation of rhodamine B and tetracycline hydrochloride is demonstrated under low intensity visible light. This photocatalyst also exhibits an excellent hydrogen evolution rate (3631 µmol h g ) under visible light. Realizing this structure just requires the introduction of phytic acid into the solution of melamine and urea during hydrothermal treatment. In this complex system, phytic acid plays as the electron donor to stabilize melamine/cyanuric acid precursor via coordination interaction. Calcination at 550 °C directly renders the transformation of precursor into such hierarchical structure. This process is facile and shows the strong potential toward mass production for real applications.

摘要

这项工作报道了一种新形式的管状 g-CN,其特点是具有引入磷元素和氮空位的分级核壳结构。核是由沿着轴向自组装的随机堆叠的 g-CN 超薄纳米片组成。这种独特的结构显著有利于电子/空穴分离和可见光捕获。在低强度可见光下,该光催化剂对罗丹明 B 和盐酸四环素的光降解表现出优异的性能。该光催化剂在可见光下也表现出优异的析氢速率(3631 µmol h g )。实现这种结构只需要在水热处理过程中将植酸引入三聚氰胺和尿素的溶液中。在这个复杂的体系中,植酸通过配位相互作用作为电子供体来稳定三聚氰胺/均三嗪酸前体。在 550°C 下煅烧可直接将前体转化为这种分级结构。这个过程很简单,显示出了朝着实际应用的大规模生产的强大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验