Suppr超能文献

免疫分析器:一种基于网络的用于分析和挖掘免疫肽组学数据的计算流程。

Immunolyser: A web-based computational pipeline for analysing and mining immunopeptidomic data.

作者信息

Munday Prithvi Raj, Fehring Joshua, Revote Jerico, Pandey Kirti, Shahbazy Mohammad, Scull Katherine E, Ramarathinam Sri H, Faridi Pouya, Croft Nathan P, Braun Asolina, Li Chen, Purcell Anthony W

机构信息

Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.

Monash eResearch Centre, Monash University, Melbourne Clayton, VIC, 3800, Australia.

出版信息

Comput Struct Biotechnol J. 2023 Feb 18;21:1678-1687. doi: 10.1016/j.csbj.2023.02.033. eCollection 2023.

Abstract

Immunopeptidomics has made tremendous contributions to our understanding of antigen processing and presentation, by identifying and quantifying antigenic peptides presented on the cell surface by Major Histocompatibility Complex (MHC) molecules. Large and complex immunopeptidomics datasets can now be routinely generated using Liquid Chromatography-Mass Spectrometry techniques. The analysis of this data - often consisting of multiple replicates/conditions - rarely follows a standard data processing pipeline, hindering the reproducibility and depth of analysis of immunopeptidomic data. Here, we present Immunolyser, an automated pipeline designed to facilitate computational analysis of immunopeptidomic data with a minimal initial setup. Immunolyser brings together routine analyses, including peptide length distribution, peptide motif analysis, sequence clustering, peptide-MHC binding affinity prediction, and source protein analysis. Immunolyser provides a user-friendly and interactive interface via its webserver and is freely available for academic purposes at https://immunolyser.erc.monash.edu/. The open-access source code can be downloaded at our GitHub repository: https://github.com/prmunday/Immunolyser. We anticipate that Immunolyser will serve as a prominent computational pipeline to facilitate effortless and reproducible analysis of immunopeptidomic data.

摘要

免疫肽组学通过识别和定量主要组织相容性复合体(MHC)分子在细胞表面呈递的抗原肽,为我们理解抗原加工和呈递做出了巨大贡献。现在可以使用液相色谱 - 质谱技术常规生成大型且复杂的免疫肽组学数据集。对这些数据(通常由多个重复样本/条件组成)的分析很少遵循标准的数据处理流程,这阻碍了免疫肽组学数据的分析可重复性和深度。在此,我们展示了Immunolyser,这是一个自动化流程,旨在以最少的初始设置促进免疫肽组学数据的计算分析。Immunolyser整合了常规分析,包括肽长度分布、肽基序分析、序列聚类、肽 - MHC结合亲和力预测和源蛋白分析。Immunolyser通过其网络服务器提供用户友好且交互式的界面,并且可通过https://immunolyser.erc.monash.edu/免费用于学术目的。开放获取的源代码可在我们的GitHub仓库下载:https://github.com/prmunday/Immunolyser。我们预计Immunolyser将成为一个重要的计算流程,以促进对免疫肽组学数据进行轻松且可重复的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f642/9988424/b83d0c85418b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验