Suppr超能文献

使用加权遗传投票集成学习法识别小于胎龄儿-大于胎龄儿的孕早期风险因素。

Identifying First-Trimester Risk Factors for SGA-LGA Using Weighted Inheritance Voting Ensemble Learning.

作者信息

Van Sau Nguyen, Cui Jinhui, Wang Yanling, Jiang Hui, Sha Feng, Li Ye

机构信息

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

University of Chinese Academy of Sciences, Beijing 100040, China.

出版信息

Bioengineering (Basel). 2024 Jun 27;11(7):657. doi: 10.3390/bioengineering11070657.

Abstract

The classification of fetuses as Small for Gestational Age (SGA) and Large for Gestational Age (LGA) is a critical aspect of neonatal health assessment. SGA and LGA, terms used to describe fetal weights that fall below or above the expected weights for Appropriate for Gestational Age (AGA) fetuses, indicate intrauterine growth restriction and excessive fetal growth, respectively. Early prediction and assessment of latent risk factors associated with these classifications can facilitate timely medical interventions, thereby optimizing the health outcomes for both the infant and the mother. This study aims to leverage first-trimester data to achieve these objectives. This study analyzed data from 7943 pregnant women, including 424 SGA, 928 LGA, and 6591 AGA cases, collected from 2015 to 2021 at the Third Affiliated Hospital of Sun Yat-sen University in Guangzhou, China. We propose a novel algorithm, named the Weighted Inheritance Voting Ensemble Learning Algorithm (WIVELA), to predict the classification of fetuses into SGA, LGA, and AGA categories based on biochemical parameters, maternal factors, and morbidity during pregnancy. Additionally, we proposed algorithms for relevance determination based on the classifier to ascertain the importance of features associated with SGA and LGA. The proposed classification solution demonstrated a notable average accuracy rate of 92.12% on 10-fold cross-validation over 100 loops, outperforming five state-of-the-art machine learning algorithms. Furthermore, we identified significant latent maternal risk factors directly associated with SGA and LGA conditions, such as weight change during the first trimester, prepregnancy weight, height, age, and obstetric factors like fetal growth restriction and birthing LGA baby. This study also underscored the importance of biomarker features at the end of the first trimester, including HDL, TG, OGTT-1h, OGTT-0h, OGTT-2h, TC, FPG, and LDL, which reflect the status of SGA or LGA fetuses. This study presents innovative solutions for classifying and identifying relevant attributes, offering valuable tools for medical teams in the clinical monitoring of fetuses predisposed to SGA and LGA conditions during the initial stage of pregnancy. These proposed solutions facilitate early intervention in nutritional care and prenatal healthcare, thereby contributing to enhanced strategies for managing the health and well-being of both the fetus and the expectant mother.

摘要

将胎儿分类为小于胎龄儿(SGA)和大于胎龄儿(LGA)是新生儿健康评估的一个关键方面。SGA和LGA这两个术语用于描述低于或高于适于胎龄儿(AGA)预期体重的胎儿体重,分别表示子宫内生长受限和胎儿过度生长。对与这些分类相关的潜在风险因素进行早期预测和评估,可以促进及时的医疗干预,从而优化婴儿和母亲的健康结局。本研究旨在利用孕早期数据实现这些目标。本研究分析了来自7943名孕妇的数据,包括424例SGA、928例LGA和6591例AGA病例,这些数据于2015年至2021年在中国广州中山大学附属第三医院收集。我们提出了一种名为加权遗传投票集成学习算法(WIVELA)的新算法,用于根据生化参数、母体因素和孕期发病率将胎儿分类为SGA、LGA和AGA类别。此外,我们还基于分类器提出了相关性确定算法,以确定与SGA和LGA相关的特征的重要性。所提出的分类解决方案在100次循环的10折交叉验证中显示出显著的平均准确率为92.12%,优于五种先进的机器学习算法。此外,我们确定了与SGA和LGA状况直接相关的重要潜在母体风险因素,如孕早期体重变化、孕前体重、身高、年龄以及胎儿生长受限和分娩LGA婴儿等产科因素。本研究还强调了孕早期末生物标志物特征的重要性,包括高密度脂蛋白(HDL)、甘油三酯(TG)、口服葡萄糖耐量试验1小时(OGTT-1h)、口服葡萄糖耐量试验0小时(OGTT-0h)、口服葡萄糖耐量试验2小时(OGTT-2h)总胆固醇(TC)、空腹血糖(FPG)和低密度脂蛋白(LDL),这些特征反映了SGA或LGA胎儿的状况。本研究提出了用于分类和识别相关属性的创新解决方案,为医疗团队在孕早期对易患SGA和LGA状况的胎儿进行临床监测提供了有价值的工具。这些提出的解决方案有助于在营养护理和产前保健方面进行早期干预,从而有助于加强管理胎儿和准妈妈健康与福祉的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6775/11274223/4a3570978da3/bioengineering-11-00657-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验