State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China.
Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, China.
Sci Adv. 2023 Mar 10;9(10):eabo1638. doi: 10.1126/sciadv.abo1638.
Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901-2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes.
世界各地并发气候极端事件的增加威胁着生态系统和我们的社会。然而,这些极端事件的空间模式及其过去和未来的变化仍不清楚。在这里,我们开发了一个统计框架来检验空间依赖性,并表明在观测和模型模拟中存在广泛的温度和降水极端事件的依赖性,世界各地极端事件的并发比预期更频繁。历史人为强迫已经加强了全球 946 对配对地区中 56%以上地区的温度极端事件的并发,特别是在热带地区,但在 1901-2020 年期间,这并没有显著影响降水极端事件的并发。SSP585 的未来高排放路径将大大放大温度和降水极端事件的并发强度、强度和空间范围,特别是在热带和北方地区,而 SSP126 的缓解路径可以减轻这些高风险地区并发气候极端事件的增加。我们的研究结果将为缓解未来气候极端事件的影响提供适应策略。