Suppr超能文献

基于 LSTM 与空间注意力的深度学习方法在马来西亚登革热预测中的应用。

A Deep Learning Approach for Dengue Fever Prediction in Malaysia Using LSTM with Spatial Attention.

机构信息

Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.

Geospatial Information Science Research Centre (GISRC), Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.

出版信息

Int J Environ Res Public Health. 2023 Feb 25;20(5):4130. doi: 10.3390/ijerph20054130.

Abstract

This research aims to predict dengue fever cases in Malaysia using machine learning techniques. A dataset consisting of weekly dengue cases at the state level in Malaysia from 2010 to 2016 was obtained from the Malaysia Open Data website and includes variables such as climate, geography, and demographics. Six different long short-term memory (LSTM) models were developed and compared for dengue prediction in Malaysia: LSTM, stacked LSTM (S-LSTM), LSTM with temporal attention (TA-LSTM), S-LSTM with temporal attention (STA-LSTM), LSTM with spatial attention (SA-LSTM), and S-LSTM with spatial attention (SSA-LSTM). The models were trained and evaluated on a dataset of monthly dengue cases in Malaysia from 2010 to 2016, with the task of predicting the number of dengue cases based on various climate, topographic, demographic, and land-use variables. The SSA-LSTM model, which used both stacked LSTM layers and spatial attention, performed the best, with an average root mean squared error (RMSE) of 3.17 across all lookback periods. When compared to three benchmark models (SVM, DT, ANN), the SSA-LSTM model had a significantly lower average RMSE. The SSA-LSTM model also performed well in different states in Malaysia, with RMSE values ranging from 2.91 to 4.55. When comparing temporal and spatial attention models, the spatial models generally performed better at predicting dengue cases. The SSA-LSTM model was also found to perform well at different prediction horizons, with the lowest RMSE at 4- and 5-month lookback periods. Overall, the results suggest that the SSA-LSTM model is effective at predicting dengue cases in Malaysia.

摘要

本研究旨在利用机器学习技术预测马来西亚的登革热病例。从马来西亚开放数据网站获得了一个包含 2010 年至 2016 年马来西亚州级每周登革热病例的数据集,其中包括气候、地理和人口统计学等变量。为了在马来西亚进行登革热预测,开发并比较了六种不同的长短期记忆 (LSTM) 模型:LSTM、堆叠 LSTM (S-LSTM)、具有时间注意力的 LSTM (TA-LSTM)、具有时间注意力的 S-LSTM (STA-LSTM)、具有空间注意力的 LSTM (SA-LSTM) 和具有空间注意力的 S-LSTM (SSA-LSTM)。模型在马来西亚 2010 年至 2016 年的每月登革热病例数据集上进行训练和评估,任务是根据各种气候、地形、人口统计学和土地利用变量预测登革热病例数量。使用堆叠 LSTM 层和空间注意力的 SSA-LSTM 模型表现最佳,所有回溯期的平均均方根误差 (RMSE) 为 3.17。与三个基准模型 (SVM、DT、ANN) 相比,SSA-LSTM 模型的平均 RMSE 明显更低。SSA-LSTM 模型在马来西亚的不同州也表现良好,RMSE 值范围为 2.91 至 4.55。在比较时间和空间注意力模型时,空间模型通常在预测登革热病例方面表现更好。还发现 SSA-LSTM 模型在不同的预测时间范围内表现良好,在 4 个月和 5 个月的回溯期时 RMSE 最低。总体而言,结果表明 SSA-LSTM 模型在预测马来西亚的登革热病例方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8acd/10002017/9f7f845d1a2f/ijerph-20-04130-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验