Suppr超能文献

基于 COVID-19 胸部 X 射线数据集的 LIME 和相似性距离分析的深度学习算法。

Deep Learning Algorithms with LIME and Similarity Distance Analysis on COVID-19 Chest X-ray Dataset.

机构信息

Department of Radiology, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan.

Department of Computer Science and Information Engineering, National Quemoy University, Kinmen County 892, Taiwan.

出版信息

Int J Environ Res Public Health. 2023 Feb 28;20(5):4330. doi: 10.3390/ijerph20054330.

Abstract

In the last few years, many types of research have been conducted on the most harmful pandemic, COVID-19. Machine learning approaches have been applied to investigate chest X-rays of COVID-19 patients in many respects. This study focuses on the deep learning algorithm from the standpoint of feature space and similarity analysis. Firstly, we utilized Local Interpretable Model-agnostic Explanations (LIME) to justify the necessity of the region of interest (ROI) process and further prepared ROI via U-Net segmentation that masked out non-lung areas of images to prevent the classifier from being distracted by irrelevant features. The experimental results were promising, with detection performance reaching an overall accuracy of 95.5%, a sensitivity of 98.4%, a precision of 94.7%, and an F1 score of 96.5% on the COVID-19 category. Secondly, we applied similarity analysis to identify outliers and further provided an objective confidence reference specific to the similarity distance to centers or boundaries of clusters while inferring. Finally, the experimental results suggested putting more effort into enhancing the low-accuracy subspace locally, which is identified by the similarity distance to the centers. The experimental results were promising, and based on those perspectives, our approach could be more flexible to deploy dedicated classifiers specific to different subspaces instead of one rigid end-to-end black box model for all feature space.

摘要

在过去的几年中,针对最具危害性的大流行病 COVID-19,已经开展了许多类型的研究。机器学习方法已被应用于从多个方面研究 COVID-19 患者的胸部 X 光片。本研究从特征空间和相似性分析的角度关注深度学习算法。首先,我们利用局部可解释模型不可知解释(LIME)来证明感兴趣区域(ROI)过程的必要性,并通过 U-Net 分割进一步准备 ROI,该分割掩蔽了图像的非肺部区域,以防止分类器被无关特征所干扰。实验结果令人鼓舞,在 COVID-19 类别中,检测性能达到了整体准确率 95.5%、敏感度 98.4%、精度 94.7%和 F1 分数 96.5%。其次,我们应用相似性分析来识别异常值,并进一步在推断时提供针对相似距离到聚类中心或边界的客观置信度参考。最后,实验结果表明,应该在相似距离到中心的情况下,更努力地增强局部低精度子空间。实验结果令人鼓舞,基于这些观点,我们的方法可以更加灵活地部署针对不同子空间的专用分类器,而不是针对所有特征空间的一个刚性端到端黑盒模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c46/10001452/11c1bf2c2fc0/ijerph-20-04330-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验