Suppr超能文献

贝叶斯多性状核方法可提高多环境基于基因组的预测。

Bayesian multitrait kernel methods improve multienvironment genome-based prediction.

机构信息

Facultad de Telemática, Universidad de Colima, Colima 28040, Mexico.

Departamento de Estadística, Centro de Investigación en Matemáticas, Guanajuato 36023, Mexico.

出版信息

G3 (Bethesda). 2022 Feb 4;12(2). doi: 10.1093/g3journal/jkab406.

Abstract

When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits because when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article, we explore Bayesian multitrait kernel methods for genomic prediction and we illustrate the power of these models with three-real datasets. The kernels under study were the linear, Gaussian, polynomial, and sigmoid kernels; they were compared with the conventional Ridge regression and GBLUP multitrait models. The results show that, in general, the Gaussian kernel method outperformed conventional Bayesian Ridge and GBLUP multitrait linear models by 2.2-17.45% (datasets 1-3) in terms of prediction performance based on the mean square error of prediction. This improvement in terms of prediction performance of the Bayesian multitrait kernel method can be attributed to the fact that the proposed model is able to capture nonlinear patterns more efficiently than linear multitrait models. However, not all kernels perform well in the datasets used for evaluation, which is why more than one kernel should be evaluated to be able to choose the best kernel.

摘要

当有多性状数据可用时,首选的模型是能够解释表型性状之间相关性的模型,因为当相关性程度适中或较大时,这会提高基因组预测的准确性。出于这个原因,在本文中,我们探索了用于基因组预测的贝叶斯多性状核方法,并使用三个真实数据集说明了这些模型的威力。研究中的核函数是线性核、高斯核、多项式核和 Sigmoid 核;它们与传统的 Ridge 回归和 GBLUP 多性状模型进行了比较。结果表明,一般来说,基于预测均方误差,高斯核方法在预测性能方面优于传统的贝叶斯 Ridge 和 GBLUP 多性状线性模型,提高了 2.2-17.45%(数据集 1-3)。贝叶斯多性状核方法在预测性能方面的这种改进可以归因于这样一个事实,即与线性多性状模型相比,该模型能够更有效地捕捉非线性模式。然而,并非所有核函数在用于评估的数据集上都表现良好,这就是为什么要评估多个核函数才能选择最佳核函数的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/015b/9210316/57afb50fd319/jkab406f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验