NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32826, USA.
Nat Commun. 2023 Mar 11;14(1):1346. doi: 10.1038/s41467-023-37011-z.
Direct ethanol fuel cells have been widely investigated as nontoxic and low-corrosive energy conversion devices with high energy and power densities. It is still challenging to develop high-activity and durable catalysts for a complete ethanol oxidation reaction on the anode and accelerated oxygen reduction reaction on the cathode. The materials' physics and chemistry at the catalytic interface play a vital role in determining the overall performance of the catalysts. Herein, we propose a Pd/Co@N-C catalyst that can be used as a model system to study the synergism and engineering at the solid-solid interface. Particularly, the transformation of amorphous carbon to highly graphitic carbon promoted by cobalt nanoparticles helps achieve the spatial confinement effect, which prevents structural degradation of the catalysts. The strong catalyst-support and electronic effects at the interface between palladium and Co@N-C endow the electron-deficient state of palladium, which enhances the electron transfer and improved activity/durability. The Pd/Co@N-C delivers a maximum power density of 438 mW cm in direct ethanol fuel cells and can be operated stably for more than 1000 hours. This work presents a strategy for the ingenious catalyst structural design that will promote the development of fuel cells and other sustainable energy-related technologies.
直接乙醇燃料电池作为一种无毒、低腐蚀性的能量转换装置,具有高能量密度和功率密度,因此受到了广泛的研究。然而,在阳极上实现完全乙醇氧化反应和在阴极上加速氧气还原反应,仍需要开发高活性和耐用的催化剂。催化剂催化界面处的材料物理和化学性质在决定催化剂的整体性能方面起着至关重要的作用。在这里,我们提出了一种 Pd/Co@N-C 催化剂,可以作为一个模型系统来研究固-固界面的协同作用和工程设计。特别是,钴纳米粒子促进无定形碳向高度石墨化碳的转变有助于实现空间限域效应,从而防止催化剂结构降解。钯和 Co@N-C 之间界面处的强催化剂-载体和电子效应赋予了钯的缺电子状态,这增强了电子转移并提高了活性/耐久性。在直接乙醇燃料电池中,Pd/Co@N-C 可提供高达 438mW/cm 的最大功率密度,并能稳定运行 1000 小时以上。这项工作提出了一种巧妙的催化剂结构设计策略,将促进燃料电池和其他可持续能源相关技术的发展。