Amsterdam UMC, location University of Amsterdam, Department of Orthopedic Surgery and Sport Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Musculoskeletal Health, Meibergdreef 9, Amsterdam, the Netherlands.
Amsterdam UMC, location University of Amsterdam, Department of Orthopedic Surgery and Sport Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Musculoskeletal Health, Meibergdreef 9, Amsterdam, the Netherlands.
Clin Biomech (Bristol). 2023 Apr;104:105930. doi: 10.1016/j.clinbiomech.2023.105930. Epub 2023 Mar 3.
After total knee arthroplasty up to 13% requires revision surgery to address loosening. No current diagnostic modalities have a sensitivity or specificity higher than 70-80% to detect loosening, leading to 20-30% of patients undergoing unnecessary, risky and expensive revision surgery. A reliable imaging modality is required to diagnose loosening. This study presents a new and non-invasive method and evaluates its reproducibility and reliability in a cadaveric study.
Ten cadaveric specimens were implanted with a loosely fitted tibial components and CT scanned under load towards valgus and varus using a loading device. Advanced three-dimensional imaging software was used to quantify displacement. Subsequently, the implants were fixed to the bone and scanned to determine the differences between the fixed and the loose state. Reproducibility errors were quantified using a frozen specimen in which displacement was absent.
Reproducibility errors, expressed as mean target registration error, screw-axis rotation and maximum total point motion were 0.073 mm (SD 0.033), 0.129 degrees (SD 0.039) and 0.116 mm (SD 0.031), respectively. In the loose condition, all displacements and rotation changes were larger than the reported reproducibility errors. Comparing the mean target registration error, screw axis rotation and maximum total point motion in the loose condition to the fixed condition resulted in mean differences of 0.463 mm (SD 0.279; p = 0.001), 1.769 degrees (SD 0.868; p < 0.001) and 1.339 mm (SD 0.712; p < 0.001), respectively.
The results of this cadaveric study show that this non-invasive method is reproducible and reliable for detection of displacement differences between fixed and loose tibial components.
全膝关节置换术后有 13%需要翻修手术来解决松动问题。目前没有一种诊断方式的灵敏度或特异性高于 70-80%,能够检测出松动,这导致 20-30%的患者接受了不必要的、风险大且昂贵的翻修手术。需要一种可靠的影像学方法来诊断松动。本研究提出了一种新的非侵入性方法,并在尸体研究中评估了其可重复性和可靠性。
10 个尸体标本植入了松动的胫骨组件,并使用加载装置在向外侧和内侧施加负荷的情况下进行 CT 扫描。使用先进的三维成像软件来量化位移。随后,将植入物固定在骨头上,并扫描以确定固定状态和松动状态之间的差异。使用没有位移的冷冻标本来量化再现性误差。
再现性误差表示为平均目标注册误差、螺钉轴旋转和最大总点运动,分别为 0.073 毫米(标准差 0.033)、0.129 度(标准差 0.039)和 0.116 毫米(标准差 0.031)。在松动状态下,所有位移和旋转变化都大于报告的再现性误差。将松动状态下的平均目标注册误差、螺钉轴旋转和最大总点运动与固定状态进行比较,结果分别为平均差异 0.463 毫米(标准差 0.279;p=0.001)、1.769 度(标准差 0.868;p<0.001)和 1.339 毫米(标准差 0.712;p<0.001)。
这项尸体研究的结果表明,这种非侵入性方法对于检测固定和松动胫骨组件之间的位移差异是可重复和可靠的。