Department of Critical Care Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India.
Department of Radiology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India.
J Med Imaging Radiat Sci. 2023 Jun;54(2):364-375. doi: 10.1016/j.jmir.2023.02.003. Epub 2023 Feb 16.
Prediction of outcomes in severe COVID-19 patients using chest computed tomography severity score (CTSS) may enable more effective clinical management and early, timely ICU admission. We conducted a systematic review and meta-analysis to determine the predictive accuracy of the CTSS for disease severity and mortality in severe COVID-19 subjects.
The electronic databases PubMed, Google Scholar, Web of Science, and the Cochrane Library were searched to find eligible studies that investigated the impact of CTSS on disease severity and mortality in COVID-19 patients between 7 January 2020 and 15 June 2021. Two independent authors looked into the risk of bias using the Quality in Prognosis Studies (QUIPS) tool.
Seventeen studies involving 2788 patients reported the predictive value of CTSS for disease severity. The pooled sensitivity, specificity, and summary area under the curve (sAUC) of CTSS were 0.85 (95% CI 0.78-0.90, I =83), 0.86 (95% CI 0.76-0.92, I =96) and 0.91 (95% CI 0.89-0.94), respectively. Six studies involving 1403 patients reported the predictive values of CTSS for COVID-19 mortality. The pooled sensitivity, specificity, and sAUC of CTSS were 0.77 (95% CI 0.69-0.83, I = 41), 0.79 (95% CI 0.72-0.85, I = 88), and 0.84 (95% CI 0.81-0.87), respectively.
Early prediction of prognosis is needed to deliver the better care to patients and stratify them as soon as possible. Because different CTSS thresholds have been reported in various studies, clinicians are still determining whether CTSS thresholds should be used to define disease severity and predict prognosis.
Early prediction of prognosis is needed to deliver optimal care and timely stratification of patients. CTSS has strong discriminating power for the prediction of disease severity and mortality in patients with COVID-19.
使用胸部计算机断层扫描严重程度评分(CTSS)预测严重 COVID-19 患者的结局,可以实现更有效的临床管理,并能更早、更及时地将患者收入 ICU。我们进行了一项系统综述和荟萃分析,以确定 CTSS 对严重 COVID-19 患者疾病严重程度和死亡率的预测准确性。
检索电子数据库 PubMed、Google Scholar、Web of Science 和 Cochrane Library,查找 2020 年 1 月 7 日至 2021 年 6 月 15 日期间研究 CTSS 对 COVID-19 患者疾病严重程度和死亡率影响的合格研究。两位独立作者使用预后研究质量工具(QUIPS)评估偏倚风险。
17 项研究共纳入 2788 例患者,报告了 CTSS 对疾病严重程度的预测价值。CTSS 的汇总敏感性、特异性和曲线下面积(sAUC)分别为 0.85(95%CI 0.78-0.90,I=83)、0.86(95%CI 0.76-0.92,I=96)和 0.91(95%CI 0.89-0.94)。6 项研究共纳入 1403 例患者,报告了 CTSS 对 COVID-19 死亡率的预测价值。CTSS 的汇总敏感性、特异性和 sAUC 分别为 0.77(95%CI 0.69-0.83,I=41)、0.79(95%CI 0.72-0.85,I=88)和 0.84(95%CI 0.81-0.87)。
需要早期预测预后,以便为患者提供更好的护理,并尽快对其进行分层。由于不同的 CTSS 阈值在不同的研究中均有报道,临床医生仍在确定是否应使用 CTSS 阈值来定义疾病严重程度并预测预后。
需要早期预测预后,以便为患者提供最佳护理,并及时对患者进行分层。CTSS 对预测 COVID-19 患者的疾病严重程度和死亡率具有较强的判别能力。