Suppr超能文献

一种经过质量检查和物理约束的深度学习方法,可从单千伏对比增强胸部 CT 扫描中估计物质基础图像。

A quality-checked and physics-constrained deep learning method to estimate material basis images from single-kV contrast-enhanced chest CT scans.

机构信息

Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.

出版信息

Med Phys. 2023 Jun;50(6):3368-3388. doi: 10.1002/mp.16352. Epub 2023 Mar 23.

Abstract

BACKGROUND

Single-kV CT imaging is one of the primary imaging methods in radiology practices. However, it does not provide material basis images for some subtle lesion characterization tasks in clinical diagnosis.

PURPOSE

To develop a quality-checked and physics-constrained deep learning (DL) method to estimate material basis images from single-kV CT data without resorting to dual-energy CT acquisition schemes.

METHODS

Single-kV CT images are decomposed into two material basis images using a deep neural network. The role of this network is to generate a feature space with 64 template features with the same matrix dimensions of the input single-kV CT image. These 64 template image features are then combined to generate the desired material basis images with different sets of combination coefficients, one for each material basis image. Dual-energy CT image acquisitions with two separate kVs were curated to generate paired training data between a single-kV CT image and the corresponding two material basis images. To ensure the obtained two material basis images are consistent with the encoded spectral information in the actual projection data, two physics constraints, that is, (1) effective energy of each measured projection datum that characterizes the beam hardening in data acquisitions and (2) physical factors of scanners such as detector and tube characteristics, are incorporated into the end-to-end training. The entire architecture is referred to as Deep-En-Chroma in this paper. In the application stage, the generated material basis images are sent to a deep quality check (Deep-QC) network to assess the quality of estimated images and to report the pixel-wise estimation errors for users. The models were developed using 5592 training and validation pairs generated from 48 clinical cases. Additional 1526 CT images from another 13 patients were used to evaluate the quantitative accuracy of water and iodine basis images estimated by Deep-En-Chroma.

RESULTS

For the iodine basis images estimated by Deep-En-Chroma, the mean difference with respect to dual-energy CT is -0.25 mg/mL, and the agreement limits are [-0.75 mg/mL, +0.24 mg/mL]. For the water basis images estimated by Deep-En-Chroma, the mean difference with respect to dual-energy CT is 0.0 g/mL, and the agreement limits are [-0.01 g/mL, 0.01 g/mL]. Across the test cohort, the median [25th, 75th percentiles] root mean square errors between the Deep-En-Chroma and dual-energy material images are 14 [12, 16] mg/mL for the water images and 0.73 [0.64, 0.80] mg/mL for the iodine images. When significant errors are present in the estimated material basis images, Deep-QC can capture these errors and provide pixel-wise error maps to inform users whether the DL results are trustworthy.

CONCLUSIONS

The Deep-En-Chroma network provides a new pathway to estimating the clinically relevant material basis images from single-kV CT data and the Deep-QC module to inform end-users of the accuracy of the DL material basis images in practice.

摘要

背景

单千伏 CT 成像(single-kV CT imaging)是放射科实践中的主要成像方法之一。然而,它无法为临床诊断中的一些细微病变特征任务提供物质基础图像。

目的

开发一种经过质量检查和物理约束的深度学习(DL)方法,以便在不依赖双能 CT 采集方案的情况下,从单千伏 CT 数据中估计物质基础图像。

方法

使用深度神经网络将单千伏 CT 图像分解为两种物质基础图像。该网络的作用是生成一个具有 64 个模板特征的特征空间,这些特征与输入单千伏 CT 图像的矩阵维度相同。然后,通过不同的组合系数集将这 64 个模板图像特征组合起来,生成所需的物质基础图像,每个物质基础图像对应一组不同的组合系数。通过两次单独的千伏值采集双能 CT 图像,生成单千伏 CT 图像与相应的两个物质基础图像之间的配对训练数据。为了确保获得的两个物质基础图像与实际投影数据中的编码光谱信息一致,将两个物理约束(即 1. 每个测量投影数据的有效能量,用于描述数据采集过程中的束硬化;2. 扫描仪的物理特性,如探测器和管特性)纳入端到端训练中。整个架构在本文中被称为 Deep-En-Chroma。在应用阶段,生成的物质基础图像被发送到深度质量检查(Deep-QC)网络,以评估估计图像的质量,并为用户报告像素级别的估计误差。该模型是使用来自 48 个临床病例的 5592 对训练和验证数据开发的。还使用了来自另外 13 名患者的 1526 个 CT 图像,以评估 Deep-En-Chroma 估计的水基图像和碘基图像的定量准确性。

结果

对于 Deep-En-Chroma 估计的碘基图像,与双能 CT 的平均差值为-0.25mg/mL,一致性范围为[-0.75mg/mL,+0.24mg/mL]。对于 Deep-En-Chroma 估计的水基图像,与双能 CT 的平均差值为 0.0g/mL,一致性范围为[-0.01g/mL,0.01g/mL]。在整个测试队列中,Deep-En-Chroma 和双能物质图像之间的中位数[25 百分位,75 百分位]均方根误差分别为水图像的 14[12,16]mg/mL和碘图像的 0.73[0.64,0.80]mg/mL。当估计的物质基础图像中存在显著误差时,Deep-QC 可以捕捉到这些误差,并提供像素级误差图,以告知用户 DL 结果是否可靠。

结论

Deep-En-Chroma 网络为从单千伏 CT 数据中估计临床相关的物质基础图像提供了新途径,而 Deep-QC 模块则可以告知最终用户 DL 物质基础图像在实际应用中的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c13/10330050/6b67a98e3b4f/nihms-1887662-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验