Department of Engineering Science, The University of Oxford, Oxford, United Kingdom.
Perspectum Ltd, Oxford, United Kingdom.
Front Endocrinol (Lausanne). 2023 Feb 22;14:1063882. doi: 10.3389/fendo.2023.1063882. eCollection 2023.
An estimated 55.5% and 37.3% of people globally with type 2 diabetes (T2D) will have concomitant non-alcoholic fatty liver disease (NAFLD) and the more severe fibroinflammatory stage, non-alcoholic steatohepatitis (NASH). NAFLD and NASH prevalence is projected to increase exponentially over the next 20 years. Bayesian Networks (BNs) offer a powerful tool for modelling uncertainty and visualising complex systems to provide important mechanistic insight.
We applied BN modelling and probabilistic reasoning to explore the probability of NASH in two extensively phenotyped clinical cohorts: 1) 211 participants with T2D pooled from the MODIFY study & UK Biobank (UKBB) online resource; and 2) 135 participants without T2D from the UKBB. MRI-derived measures of visceral (VAT), subcutaneous (SAT), skeletal muscle (SMI), liver fat (MRI-PDFF), liver fibroinflammatory change (liver cT1) and pancreatic fat (MRI-PDFF) were combined with plasma biomarkers for network construction. NASH was defined according to liver PDFF >5.6% and liver cT1 >800ms. Conditional probability queries were performed to estimate the probability of NASH after fixing the value of specific network variables.
In the T2D cohort we observed a stepwise increase in the probability of NASH with each obesity classification (normal weight: 13%, overweight: 23%, obese: 36%, severe obesity: 62%). In the T2D and non-T2D cohorts, elevated ( normal) VAT conferred a 20% and 1% increase in the probability of NASH, respectively, while elevated SAT caused a 7% increase in NASH risk within the T2D cohort only. In those with T2D, reducing HbA1c from the 'high' to 'low' value reduced the probability of NASH by 22%.
Using BNs and probabilistic reasoning to study the probability of NASH, we highlighted the relative contribution of obesity, ectopic fat (VAT and liver) and glycaemic status to increased NASH risk, namely in people with T2D. Such modelling can provide insights into the efficacy and magnitude of public health and pharmacological interventions to reduce the societal burden of NASH.
全球约有 55.5%和 37.3%的 2 型糖尿病(T2D)患者同时患有非酒精性脂肪性肝病(NAFLD)和更严重的纤维化炎症期非酒精性脂肪性肝炎(NASH)。预计在未来 20 年内,NAFLD 和 NASH 的患病率将呈指数级增长。贝叶斯网络(BNs)为建模不确定性和可视化复杂系统提供了一种强大的工具,从而提供重要的机制见解。
我们应用 BN 建模和概率推理来探索两个广泛表型临床队列中 NASH 的概率:1)来自 MODIFY 研究和英国生物银行(UKBB)在线资源的 211 名 T2D 患者的汇总;2)来自 UKBB 的 135 名无 T2D 的患者。MRI 衍生的内脏(VAT)、皮下(SAT)、骨骼肌(SMI)、肝脏脂肪(MRI-PDFF)、肝脏纤维化炎症变化(肝脏 cT1)和胰腺脂肪(MRI-PDFF)的测量值与血浆生物标志物相结合,用于网络构建。根据肝脏 PDFF>5.6%和肝脏 cT1>800ms 定义 NASH。进行条件概率查询,以在固定特定网络变量的值后估计 NASH 的概率。
在 T2D 队列中,我们观察到随着肥胖分类的增加(正常体重:13%、超重:23%、肥胖:36%、严重肥胖:62%),NASH 的概率呈阶梯式增加。在 T2D 和非 T2D 队列中,升高(正常)VAT 使 NASH 的可能性分别增加 20%和 1%,而仅在 T2D 队列中,升高的 SAT 导致 NASH 风险增加 7%。在 T2D 患者中,将 HbA1c 从“高”降低到“低”可使 NASH 的概率降低 22%。
我们使用 BNs 和概率推理来研究 NASH 的概率,突出了肥胖、异位脂肪(VAT 和肝脏)和血糖状态对增加 NASH 风险的相对贡献,即对 T2D 患者。这种建模可以深入了解公共卫生和药理学干预措施的效果和规模,以减轻 NASH 的社会负担。