Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT.
Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT.
JCO Clin Cancer Inform. 2023 Mar;7:e2200160. doi: 10.1200/CCI.22.00160.
We determined whether a large, multianalyte panel of circulating biomarkers can improve detection of early-stage pancreatic ductal adenocarcinoma (PDAC).
We defined a biologically relevant subspace of blood analytes on the basis of previous identification in premalignant lesions or early-stage PDAC and evaluated each in pilot studies. The 31 analytes that met minimum diagnostic accuracy were measured in serum of 837 subjects (461 healthy, 194 benign pancreatic disease, and 182 early-stage PDAC). We used machine learning to develop classification algorithms using the relationship between subjects on the basis of their changes across the predictors. Model performance was subsequently evaluated in an independent validation data set from 186 additional subjects.
A classification model was trained on 669 subjects (358 healthy, 159 benign, and 152 early-stage PDAC). Model evaluation on a hold-out test set of 168 subjects (103 healthy, 35 benign, and 30 early-stage PDAC) yielded an area under the receiver operating characteristic curve (AUC) of 0.920 for classification of PDAC from non-PDAC (benign and healthy controls) and an AUC of 0.944 for PDAC versus healthy controls. The algorithm was then validated in 146 subsequent cases presenting with pancreatic disease (73 benign pancreatic disease and 73 early- and late-stage PDAC cases) and 40 healthy control subjects. The validation set yielded an AUC of 0.919 for classification of PDAC from non-PDAC and an AUC of 0.925 for PDAC versus healthy controls.
Individually weak serum biomarkers can be combined into a strong classification algorithm to develop a blood test to identify patients who may benefit from further testing.
我们旨在确定一个大型多分析物循环生物标志物面板是否可以提高早期胰腺导管腺癌(PDAC)的检测率。
我们基于癌前病变或早期 PDAC 中的先前鉴定,定义了血液分析物的一个生物学上相关的子空间,并在试点研究中评估了每个分析物。在 837 名受试者(461 名健康对照,194 名良性胰腺疾病,182 名早期 PDAC)的血清中测量了符合最小诊断准确性的 31 种分析物。我们使用机器学习基于受试者在预测指标上的变化关系来开发分类算法。随后,在来自另外 186 名受试者的独立验证数据集中评估模型性能。
基于 669 名受试者(358 名健康对照,159 名良性疾病,152 名早期 PDAC)建立了分类模型。在 168 名受试者(103 名健康对照,35 名良性疾病,30 名早期 PDAC)的保留测试集中对模型进行评估,得出区分 PDAC 与非 PDAC(良性和健康对照)的受试者的受试者工作特征曲线下面积(AUC)为 0.920,而区分 PDAC 与健康对照的 AUC 为 0.944。然后,该算法在随后的 146 例胰腺疾病(73 例良性胰腺疾病和 73 例早期和晚期 PDAC 病例)和 40 名健康对照受试者中进行了验证。验证组中,区分 PDAC 与非 PDAC 的 AUC 为 0.919,区分 PDAC 与健康对照的 AUC 为 0.925。
单个弱的血清生物标志物可以组合成一个强大的分类算法,以开发一种血液检测方法来识别可能受益于进一步检测的患者。