Suppr超能文献

心脏手术后心房颤动的多变量预测模型:系统评价方案。

Multivariable prediction models for atrial fibrillation after cardiac surgery: a systematic review protocol.

机构信息

Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Boston, Massachusetts, USA.

Centre for Statistics in Medicine, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.

出版信息

BMJ Open. 2023 Mar 13;13(3):e067260. doi: 10.1136/bmjopen-2022-067260.

Abstract

INTRODUCTION

Dozens of multivariable prediction models for atrial fibrillation after cardiac surgery (AFACS) have been published, but none have been incorporated into regular clinical practice. One of the reasons for this lack of adoption is poor model performance due to methodological weaknesses in model development. In addition, there has been little external validation of these existing models to evaluate their reproducibility and transportability. The aim of this systematic review is to critically appraise the methodology and risk of bias of papers presenting the development and/or validation of models for AFACS.

METHODS

We will identify studies that present the development and/or validation of a multivariable prediction model for AFACS through searches of PubMed, Embase and Web of Science from inception to 31 December 2021. Pairs of reviewers will independently extract model performance measures, assess methodological quality and assess risk of bias of included studies using extraction forms adapted from a combination of the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies checklist and the Prediction Model Risk of Bias Assessment Tool. Extracted information will be reported by narrative synthesis and descriptive statistics.

ETHICS AND DISSEMINATION

This systemic review will only include published aggregate data, so no protected health information will be used. Study findings will be disseminated through peer-reviewed publications and scientific conference presentations. Further, this review will identify weaknesses in past AFACS prediction model development and validation methodology so that subsequent studies can improve upon prior practices and produce a clinically useful risk estimation tool.

PROSPERO REGISTRATION NUMBER

CRD42019127329.

摘要

简介

已经有数十种用于心脏手术后心房颤动(AFACS)的多变量预测模型发表,但没有一种被纳入常规临床实践。导致这种缺乏采用的原因之一是由于模型开发方法学上的弱点,导致模型性能不佳。此外,这些现有模型的外部验证很少,无法评估其再现性和可转移性。本系统评价的目的是批判性地评估介绍 AFACS 模型开发和/或验证的论文的方法学和偏倚风险。

方法

我们将通过搜索 PubMed、Embase 和 Web of Science,从成立到 2021 年 12 月 31 日,确定介绍 AFACS 多变量预测模型开发和/或验证的研究。 pairs of reviewers 将独立提取模型性能指标,使用从预测模型风险评估工具和预测模型评估的系统评价的批判性评估和数据提取清单的组合中改编的提取表,评估纳入研究的方法学质量和偏倚风险。提取的信息将通过叙述性综合和描述性统计报告。

伦理与传播

本系统评价仅包括已发表的汇总数据,因此不会使用受保护的健康信息。研究结果将通过同行评议的出版物和科学会议报告进行传播。此外,本综述将确定过去 AFACS 预测模型开发和验证方法学的弱点,以便随后的研究能够改进先前的实践,并产生一种临床有用的风险估计工具。

PROSPERO 注册号:CRD42019127329。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验