Department of Psychosomatic Medicine, Charite University Hospital Berlin, Berlin, Germany
Department of Clinical, Neuro-, and Developmental Psychology, Vrije Universiteit Amsterdam Faculty of Behavioural and Movement Sciences, Amsterdam, The Netherlands.
BMJ Ment Health. 2023 Feb;26(1). doi: 10.1136/bmjment-2022-300626.
Hundreds of randomised controlled trials and dozens of meta-analyses have examined psychotherapies for depression-yet not all points in the same direction. Are these discrepancies a result of specific meta-analytical decisions or do most analytical strategies reaching the same conclusion?
We aim to solve these discrepancies by conducting a multiverse meta-analysis containing all possible meta-analyses, using all statistical methods.
We searched four bibliographical databases (PubMed, EMBASE, PsycINFO and Cochrane Register of Controlled Trials), including studies published until 1 January 2022. We included all randomised controlled trials comparing psychotherapies with control conditions without restricting the type of psychotherapy, target group, intervention format, control condition and diagnosis. We defined all possible meta-analyses emerging from combinations of these inclusion criteria and estimated the resulting pooled effect sizes with fixed-effect, random-effects, 3-level, robust variance estimation, -uniform and PET-PEESE (precision-effect test and precision-effect estimate with SE) meta-analysis models. This study was preregistered (https://doi.org/10.1136/bmjopen-2021-050197).
A total of 21 563 records were screened, and 3584 full texts were retrieved; 415 studies met our inclusion criteria containing 1206 effect sizes and 71 454 participants. Based on all possible combinations between inclusion criteria and meta-analytical methods, we calculated 4281 meta-analyses. The average summary effect size for these meta-analyses was Hedges' =0.56, a medium effect size, and ranged from =-0.66 to 2.51. In total, 90% of these meta-analyses reached a clinically relevant magnitude.
The multiverse meta-analysis revealed the overall robustness of the effectiveness of psychotherapies for depression. Notably, meta-analyses that included studies with a high risk of bias, compared the intervention with wait-list control groups, and not correcting for publication bias produced larger effect sizes.
数百项随机对照试验和数十项荟萃分析研究了抑郁症的心理疗法,但并非所有结果都指向同一方向。这些差异是由于特定的荟萃分析决策造成的,还是大多数分析策略得出了相同的结论?
我们旨在通过进行多宇宙荟萃分析来解决这些差异,该分析包含所有可能的荟萃分析,使用所有统计方法。
我们在四个文献数据库(PubMed、EMBASE、PsycINFO 和 Cochrane 对照试验登记册)中进行了搜索,包括截至 2022 年 1 月 1 日发表的研究。我们纳入了所有比较心理疗法与对照条件的随机对照试验,不限制心理疗法的类型、目标人群、干预形式、对照条件和诊断。我们定义了从这些纳入标准的组合中产生的所有可能的荟萃分析,并使用固定效应、随机效应、3 级、稳健方差估计、-均匀和 PET-PEESE(精度效应检验和精度效应估计与 SE)荟萃分析模型来估计由此产生的合并效应大小。这项研究已预先注册(https://doi.org/10.1136/bmjopen-2021-050197)。
共筛选出 21563 条记录,检索到 3584 篇全文;415 项研究符合纳入标准,包含 1206 个效应大小和 71454 名参与者。基于纳入标准和荟萃分析方法之间的所有可能组合,我们计算了 4281 项荟萃分析。这些荟萃分析的平均综合效应大小为 Hedges'=0.56,属于中等效应大小,范围为=-0.66 至 2.51。总的来说,90%的荟萃分析达到了临床相关的效果量。
多宇宙荟萃分析揭示了心理疗法治疗抑郁症的总体有效性的稳健性。值得注意的是,纳入存在高偏倚风险的研究、将干预与等待名单对照组进行比较、且不校正发表偏倚的荟萃分析产生了更大的效应大小。