Suppr超能文献

用于预测结直肠癌住院患者术后静脉血栓栓塞的机器学习模型的开发与验证:一项回顾性研究。

Development and validation of machine learning models for postoperative venous thromboembolism prediction in colorectal cancer inpatients: a retrospective study.

作者信息

Qin Li, Liang Zhikun, Xie Jingwen, Ye Guozeng, Guan Pengcheng, Huang Yaoyao, Li Xiaoyan

机构信息

Department of Pharmacy, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

J Gastrointest Oncol. 2023 Feb 28;14(1):220-232. doi: 10.21037/jgo-23-18. Epub 2023 Feb 15.

Abstract

BACKGROUND

Colorectal cancer (CRC) is a heterogeneous group of malignancies distinguished by distinct clinical features. The association of these features with venous thromboembolism (VTE) is yet to be clarified. Machine learning (ML) models are well suited to improve VTE prediction in CRC due to their ability to receive the characteristics of a large number of features and understand the dataset to obtain implicit correlations.

METHODS

Data were extracted from 4,914 patients with colorectal cancer between August 2019 and August 2022, and 1,191 patients who underwent surgery on the primary tumor site with curative intent were included. The variables analyzed included patient-level factors, cancer-level factors, and laboratory test results. Model training was conducted on 30% of the dataset using a ten-fold cross-validation method and model validation was performed using the total dataset. The primary outcome was VTE occurrence in postoperative 30 days. Six ML algorithms, including logistic regression (LR), random forest (RF), extreme gradient boosting (XGBoost), weighted support vector machine (SVM), a multilayer perception (MLP) network, and a long short-term memory (LSTM) network, were applied for model fitting. The model evaluation was based on six indicators, including receiver operating characteristic curve-area under the curve (ROC-AUC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV), and Brier score. Two previous VTE models (Caprini and Khorana) were used as the benchmarks.

RESULTS

The incidence of postoperative VTE was 10.8%. The top ten significant predictors included lymph node metastasis, C-reactive protein, tumor grade, anemia, primary tumor location, sex, age, D-dimer level, thrombin time, and tumor stage. In our results, the XGBoost model showed the best performance, with a ROC-AUC of 0.990, a SEN of 96.9%, a SPE of 96.1% in training dataset and a ROC-AUC of 0.908, a SEN of 77.5%, a SPE of 93.7% in validation dataset. All ML models outperformed the previously developed models (Caprini and Khorana).

CONCLUSIONS

This study developed postoperative VTE predictive models using six ML algorithms. The XGBoost VTE model might supply a complementary tool for clinical VTE prophylaxis decision-making and the proposed risk factors could shed some light on VTE risk stratification in CRC patients.

摘要

背景

结直肠癌(CRC)是一组异质性恶性肿瘤,具有不同的临床特征。这些特征与静脉血栓栓塞(VTE)之间的关联尚待阐明。机器学习(ML)模型非常适合改善CRC中VTE的预测,因为它们能够接收大量特征的特性并理解数据集以获得隐含的相关性。

方法

数据来自2019年8月至2022年8月期间的4914例结直肠癌患者,纳入1191例在原发肿瘤部位接受了根治性手术的患者。分析的变量包括患者层面的因素、癌症层面的因素和实验室检查结果。使用十折交叉验证法在30%的数据集上进行模型训练,并使用整个数据集进行模型验证。主要结局是术后30天内VTE的发生情况。应用六种ML算法进行模型拟合,包括逻辑回归(LR)、随机森林(RF)、极端梯度提升(XGBoost)、加权支持向量机(SVM)、多层感知器(MLP)网络和长短期记忆(LSTM)网络。模型评估基于六个指标,包括受试者工作特征曲线下面积(ROC-AUC)、灵敏度(SEN)、特异度(SPE)、阳性预测值(PPV)、阴性预测值(NPV)和布里尔评分。将之前的两个VTE模型(Caprini和Khorana)用作基准。

结果

术后VTE的发生率为10.8%。十大显著预测因素包括淋巴结转移、C反应蛋白、肿瘤分级、贫血、原发肿瘤位置、性别、年龄、D-二聚体水平、凝血酶时间和肿瘤分期。在我们的结果中,XGBoost模型表现最佳,训练数据集中的ROC-AUC为0.990,SEN为96.9%,SPE为96.1%;验证数据集中的ROC-AUC为0.908,SEN为77.5%,SPE为93.7%。所有ML模型均优于先前开发的模型(Caprini和Khorana)。

结论

本研究使用六种ML算法开发了术后VTE预测模型。XGBoost VTE模型可能为临床VTE预防决策提供一个补充工具,并且所提出的风险因素可能有助于阐明CRC患者的VTE风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a09e/10007945/83204696fcc1/jgo-14-01-220-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验