Suppr超能文献

使用临床医生指导的机器学习方法预测 COVID-19 阳性患者的住院情况。

Predicting hospitalization of COVID-19 positive patients using clinician-guided machine learning methods.

机构信息

Department of Medicine, Brigham & Women's Hospital, Boston, Massachusetts, USA.

Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Am Med Inform Assoc. 2022 Sep 12;29(10):1661-1667. doi: 10.1093/jamia/ocac083.

Abstract

OBJECTIVES

The coronavirus disease 2019 (COVID-19) is a resource-intensive global pandemic. It is important for healthcare systems to identify high-risk COVID-19-positive patients who need timely health care. This study was conducted to predict the hospitalization of older adults who have tested positive for COVID-19.

METHODS

We screened all patients with COVID test records from 11 Mass General Brigham hospitals to identify the study population. A total of 1495 patients with age 65 and above from the outpatient setting were included in the final cohort, among which 459 patients were hospitalized. We conducted a clinician-guided, 3-stage feature selection, and phenotyping process using iterative combinations of literature review, clinician expert opinion, and electronic healthcare record data exploration. A list of 44 features, including temporal features, was generated from this process and used for model training. Four machine learning prediction models were developed, including regularized logistic regression, support vector machine, random forest, and neural network.

RESULTS

All 4 models achieved area under the receiver operating characteristic curve (AUC) greater than 0.80. Random forest achieved the best predictive performance (AUC = 0.83). Albumin, an index for nutritional status, was found to have the strongest association with hospitalization among COVID positive older adults.

CONCLUSIONS

In this study, we developed 4 machine learning models for predicting general hospitalization among COVID positive older adults. We identified important clinical factors associated with hospitalization and observed temporal patterns in our study cohort. Our modeling pipeline and algorithm could potentially be used to facilitate more accurate and efficient decision support for triaging COVID positive patients.

摘要

目的

2019 年冠状病毒病(COVID-19)是一场资源密集型的全球大流行。对于医疗保健系统来说,识别需要及时医疗护理的高风险 COVID-19 阳性患者至关重要。本研究旨在预测 COVID-19 检测呈阳性的老年人的住院情况。

方法

我们筛选了来自 11 家马萨诸塞州综合医院的所有 COVID 检测记录,以确定研究人群。最终队列包括来自门诊的 1495 名 65 岁及以上的患者,其中 459 名患者住院。我们进行了临床医生指导的、分 3 阶段的特征选择和表型分析过程,使用文献回顾、临床医生专家意见和电子医疗记录数据探索的迭代组合。从这个过程中生成了一份包含时间特征的 44 个特征列表,并用于模型训练。开发了 4 种机器学习预测模型,包括正则化逻辑回归、支持向量机、随机森林和神经网络。

结果

所有 4 种模型的受试者工作特征曲线下面积(AUC)均大于 0.80。随机森林的预测性能最佳(AUC=0.83)。白蛋白,一种营养状况的指标,被发现与 COVID 阳性老年人的住院率之间存在最强的关联。

结论

在这项研究中,我们为预测 COVID 阳性老年患者的一般住院情况开发了 4 种机器学习模型。我们确定了与住院相关的重要临床因素,并观察了我们研究队列中的时间模式。我们的建模流程和算法可能有助于为 COVID 阳性患者分诊提供更准确和高效的决策支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ade/9471713/a691df909509/ocac083f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验