The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
Chembiochem. 2023 Aug 15;24(16):e202200796. doi: 10.1002/cbic.202200796. Epub 2023 Jul 17.
Antimicrobial resistance (AMR) is a growing global problem with more than 1 million deaths due to AMR infection in 2019 alone. New and innovative therapeutics are required to overcome this challenge. Antimicrobial photodynamic therapy (aPDT) is a rapidly growing area of research poised to provide much needed help in the fight against AMR. aPDT works by administering a photosensitizer (PS) that is activated only when irradiated with light, allowing high spatiotemporal control and selectivity. The PS typically generates reactive oxygen species (ROS), which can damage a variety of key biological targets, potentially circumventing existing resistance mechanisms. Metal complexes are well known to display excellent optoelectronic properties, and recent focus has begun to shift towards their application in tackling microbial infections. Herein, we review the last five years of progress in the emerging field of small-molecule metal complex PSs for aPDT.
抗微生物药物耐药性(AMR)是一个日益严重的全球性问题,仅在 2019 年,就有超过 100 万人因 AMR 感染而死亡。需要新的和创新的治疗方法来克服这一挑战。抗菌光动力疗法(aPDT)是一个快速发展的研究领域,有望在对抗 AMR 方面提供急需的帮助。aPDT 通过给予仅在光照下被激活的光敏剂(PS)来起作用,从而实现高时空控制和选择性。PS 通常会产生活性氧(ROS),这些 ROS 可以破坏多种关键生物靶标,从而可能规避现有的耐药机制。金属配合物以显示出优异的光电性能而闻名,最近的研究重点开始转向将其应用于治疗微生物感染。本文综述了过去五年小分子金属配合物 PS 在新兴的 aPDT 领域的进展。