LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Int J Mol Sci. 2023 Nov 4;24(21):15970. doi: 10.3390/ijms242115970.
Bacterial resistance to antibiotics is a critical global health issue and the development of alternatives to conventional antibiotics is of the upmost relevance. Antimicrobial photodynamic therapy (aPDT) is considered a promising and innovative approach for the photoinactivation of microorganisms, particularly in cases where traditional antibiotics may be less effective due to resistance or other limitations. In this study, two β-modified monocharged porphyrin-imidazolium derivatives were efficiently incorporated into polyvinylpyrrolidone (PVP) formulations and supported into graphitic carbon nitride materials. Both porphyrin-imidazolium derivatives displayed remarkable photostability and the ability to generate cytotoxic singlet oxygen. These properties, which have an important impact on achieving an efficient photodynamic effect, were not compromised after incorporation/immobilization. The prepared PVP-porphyrin formulations and the graphitic carbon nitride-based materials displayed excellent performance as photosensitizers to photoinactivate methicillin-resistant (MRSA) (99.9999% of bacteria) throughout the antimicrobial photodynamic therapy. In each matrix, the most rapid action against was observed when using PS . The formulation needed 10 min of exposure to white light at 5.0 µm, while the graphitic carbon nitride hybrid required 20 min at 25.0 µm to achieve a similar level of response. These findings suggest the potential of graphitic carbon nitride-porphyrinic hybrids to be used in the environmental or clinical fields, avoiding the use of organic solvents, and might allow for their recovery after treatment, improving their applicability for bacteria photoinactivation.
细菌对抗生素的耐药性是一个全球性的健康问题,开发抗生素替代品至关重要。光动力抗菌疗法(aPDT)被认为是一种很有前途和创新的方法,可以用光来灭活微生物,特别是在传统抗生素由于耐药性或其他限制而效果不佳的情况下。在这项研究中,两种β-修饰的单电荷卟啉-咪唑衍生物被有效地掺入到聚乙烯吡咯烷酮(PVP)制剂中,并支撑到石墨相氮化碳材料上。两种卟啉-咪唑衍生物都表现出显著的光稳定性和生成细胞毒性单线态氧的能力。这些性质对实现有效的光动力效应有重要影响,在掺入/固定化后没有受到影响。所制备的 PVP-卟啉制剂和基于石墨相氮化碳的材料表现出优异的性能,作为光敏剂,通过光动力抗菌疗法可有效地光灭活耐甲氧西林金黄色葡萄球菌(MRSA)(99.9999%的细菌)。在每个基质中,使用 PS 对抗菌效果最快。 制剂在 5.0 µm 的白光下照射 10 分钟,而石墨相氮化碳杂化物则需要 20 分钟在 25.0 µm 下才能达到类似的响应水平。这些发现表明,石墨相氮化碳-卟啉杂化物有可能用于环境或临床领域,避免使用有机溶剂,并可能在处理后进行回收,从而提高其在细菌光灭活方面的适用性。