Suppr超能文献

基于注意力机制的多尺度卷积神经网络的蚊群计数。

Mosquito swarm counting via attention-based multi-scale convolutional neural network.

机构信息

School of Communication Engineering, Hangzhou Dianzi University, 1158 2nd Street, Hangzhou, China.

Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, China.

出版信息

Sci Rep. 2023 Mar 14;13(1):4215. doi: 10.1038/s41598-023-30387-4.

Abstract

Monitoring mosquito density to predict the risk of transmission of the virus and develop a response in advance is an important part of prevention efforts. This paper aims to estimate accurately the mosquito swarm count from a given image. To this end, we proposed an attention-based multi-scale mosquito swarm counting model that consists of the feature extraction network (FEN) and attention based multi-scale regression network (AMRN). The FEN uses VGG-16 network to extract low-level features of mosquitoes. The AMRN adopts a multi-scale convolutional neural network, and with a squeeze and excitation channel attention module in the branch with a 7 × 7 convolution kernel to extract high-level features, map the feature map to the mosquito swarm density map and estimate mosquitoes count. We collected and labelled a data set that includes 391 mosquito swarm images with 15,466 mosquitoes. Experiments show that our method performs well on the data set and achieves mean absolute error (MAE) of 1.810 and root mean square error (RMSE) of 3.467.

摘要

监测蚊子密度以预测病毒传播的风险并提前做出应对是预防工作的重要组成部分。本文旨在从给定图像中准确估计蚊子群数量。为此,我们提出了一种基于注意力的多尺度蚊子群计数模型,该模型由特征提取网络(FEN)和基于注意力的多尺度回归网络(AMRN)组成。FEN 使用 VGG-16 网络提取蚊子的低水平特征。AMRN 采用多尺度卷积神经网络,并在带有 7×7 卷积核的分支中使用挤压和激励通道注意力模块提取高级特征,将特征图映射到蚊子密度图并估计蚊子数量。我们收集并标记了一个包含 391 张蚊子群图像和 15466 只蚊子的数据集。实验表明,我们的方法在该数据集上表现良好,平均绝对误差(MAE)为 1.810,均方根误差(RMSE)为 3.467。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da13/10015069/acf1c4548190/41598_2023_30387_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验