Department of Computer Science and Engineering, University of South Florida, Tampa, FL, 33620, USA.
Department of Computer Science, Northern Illinois University, Dekalb, IL, 60115, USA.
Sci Rep. 2020 Aug 3;10(1):13059. doi: 10.1038/s41598-020-69964-2.
We design a framework based on Mask Region-based Convolutional Neural Network to automatically detect and separately extract anatomical components of mosquitoes-thorax, wings, abdomen and legs from images. Our training dataset consisted of 1500 smartphone images of nine mosquito species trapped in Florida. In the proposed technique, the first step is to detect anatomical components within a mosquito image. Then, we localize and classify the extracted anatomical components, while simultaneously adding a branch in the neural network architecture to segment pixels containing only the anatomical components. Evaluation results are favorable. To evaluate generality, we test our architecture trained only with mosquito images on bumblebee images. We again reveal favorable results, particularly in extracting wings. Our techniques in this paper have practical applications in public health, taxonomy and citizen-science efforts.
我们设计了一个基于 Mask Region-based Convolutional Neural Network 的框架,用于自动检测和分别提取蚊子胸部、翅膀、腹部和腿部的解剖结构。我们的训练数据集由在佛罗里达州捕获的 9 种蚊子的 1500 张智能手机图像组成。在提出的技术中,第一步是检测蚊子图像中的解剖结构。然后,我们定位和分类提取的解剖结构,同时在神经网络架构中添加一个分支来分割仅包含解剖结构的像素。评估结果是有利的。为了评估通用性,我们仅使用蚊子图像训练我们的架构,并对大黄蜂图像进行测试。我们再次得到了有利的结果,特别是在提取翅膀方面。我们在本文中提出的技术在公共卫生、分类学和公民科学方面具有实际应用。