Suppr超能文献

探索用于量子应用的密集堆积三重态介质中优化电子自旋弛豫的设计规则。

Probing the Design Rules for Optimizing Electron Spin Relaxation in Densely Packed Triplet Media for Quantum Applications.

作者信息

Attwood Max, Li Yingxu, Nevjestic Irena, Diggle Phil, Collauto Alberto, Betala Muskaan, White Andrew J P, Oxborrow Mark

机构信息

Department of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom.

Department of Chemistry and Centre for Pulse EPR spectroscopy, Imperial College London, Molecular Sciences Research Hub, W12 0BZ London, United Kingdom.

出版信息

ACS Mater Lett. 2024 Dec 19;7(1):286-294. doi: 10.1021/acsmaterialslett.4c01465. eCollection 2025 Jan 6.

Abstract

Quantum technologies using electron spins have the advantage of employing chemical qubit media with tunable properties. The principal objective of material engineers is to enhance photoexcited spin yields and quantum spin relaxation. In this study, we demonstrate a facile synthetic approach to control spin properties in charge-transfer cocrystals consisting of 1,2,4,5-tetracyanobenzene (TCNB) and acetylated anthracene. We find that the extent and position of acetylation control the degree of charge-transfer and the optical band gap by modifying crystal packing and electronic structure. We further reveal that while the spin polarization of the triplet state is slightly reduced compared to prototypical Anthracene:TCNB, the phase memory ( ) and, for 9-acetylanthracene:TCNB spin-lattice relaxation ( ) time, could be enhanced up to 2.4 times. Our findings are discussed in the context of quantum microwave amplifiers, known as masers, and show that acetylation could be a powerful tool for improving organic materials for quantum sensing applications.

摘要

利用电子自旋的量子技术具有采用具有可调谐特性的化学量子比特介质的优势。材料工程师的主要目标是提高光激发自旋产率和量子自旋弛豫。在本研究中,我们展示了一种简便的合成方法,用于控制由1,2,4,5-四氰基苯(TCNB)和乙酰化蒽组成的电荷转移共晶体中的自旋性质。我们发现乙酰化的程度和位置通过改变晶体堆积和电子结构来控制电荷转移程度和光学带隙。我们进一步揭示,虽然与典型的蒽:TCNB相比,三重态的自旋极化略有降低,但对于9-乙酰化蒽:TCNB,相位记忆( )以及自旋晶格弛豫( )时间可提高至2.4倍。我们在称为脉泽的量子微波放大器的背景下讨论了我们的发现,并表明乙酰化可能是改善用于量子传感应用的有机材料的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d88/11707738/cc8124767d72/tz4c01465_0005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验