Suppr超能文献

基于深度 SVDD 和迁移学习的 CT 图像 COVID-19 诊断方法。

Deep SVDD and Transfer Learning for COVID-19 Diagnosis Using CT Images.

机构信息

Computer Science Department, Ibb University, Ibb, Yemen.

Information Systems Department, Faculty of Computers and Information, Mansoura University, Mansoura 35511, Egypt.

出版信息

Comput Intell Neurosci. 2023 Mar 7;2023:6070970. doi: 10.1155/2023/6070970. eCollection 2023.

Abstract

The novel coronavirus disease (COVID-19), which appeared in Wuhan, China, is spreading rapidly worldwide. Health systems in many countries have collapsed as a result of this pandemic, and hundreds of thousands of people have died due to acute respiratory distress syndrome caused by this virus. As a result, diagnosing COVID-19 in the early stages of infection is critical in the fight against the disease because it saves the patient's life and prevents the disease from spreading. In this study, we proposed a novel approach based on transfer learning and deep support vector data description (DSVDD) to distinguish among COVID-19, non-COVID-19 pneumonia, and intact CT images. Our approach consists of three models, each of which can classify one specific category as normal and the other as anomalous. To our knowledge, this is the first study to use the one-class DSVDD and transfer learning to diagnose lung disease. For the proposed approach, we used two scenarios: one with pretrained VGG16 and one with ResNet50. The proposed models were trained using data gathered with the assistance of an expert radiologist from three internet-accessible sources in end-to-end fusion using three split data ratios. Based on training with 70%, 50%, and 30% of the data, the proposed VGG16 models achieved (0.8281, 0.9170, and 0.9294) for the F1 score, while the proposed ResNet50 models achieved (0.9109, 0.9188, and 0.9333).

摘要

新型冠状病毒病(COVID-19),出现在中国武汉,正在全球迅速传播。由于这种大流行,许多国家的卫生系统已经崩溃,由于这种病毒引起的急性呼吸窘迫综合征,已有数十万人死亡。因此,在感染的早期阶段诊断 COVID-19 对于抗击这种疾病至关重要,因为它可以挽救患者的生命并防止疾病传播。在这项研究中,我们提出了一种基于迁移学习和深度支持向量数据描述(DSVDD)的新方法,用于区分 COVID-19、非 COVID-19 肺炎和完整的 CT 图像。我们的方法由三个模型组成,每个模型都可以将一种特定类别分类为正常,另一种为异常。据我们所知,这是首次使用单类 DSVDD 和迁移学习来诊断肺部疾病的研究。对于所提出的方法,我们使用了两种情况:一种是预训练的 VGG16,另一种是 ResNet50。所提出的模型使用专家放射科医生从三个可访问互联网的来源收集的数据,通过端到端融合在三个分割数据比例下进行训练。基于 70%、50%和 30%的数据进行训练,所提出的 VGG16 模型的 F1 得分分别为(0.8281、0.9170 和 0.9294),而所提出的 ResNet50 模型的 F1 得分分别为(0.9109、0.9188 和 0.9333)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8991/10014155/4bf472364012/CIN2023-6070970.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验