Suppr超能文献

定时风险网络:纳入时变差异进行oncogenetic 分析。

Timed hazard networks: Incorporating temporal difference for oncogenetic analysis.

机构信息

Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY, United States of America.

出版信息

PLoS One. 2023 Mar 16;18(3):e0283004. doi: 10.1371/journal.pone.0283004. eCollection 2023.

Abstract

Oncogenetic graphical models are crucial for understanding cancer progression by analyzing the accumulation of genetic events. These models are used to identify statistical dependencies and temporal order of genetic events, which helps design targeted therapies. However, existing algorithms do not account for temporal differences between samples in oncogenetic analysis. This paper introduces Timed Hazard Networks (TimedHN), a new statistical model that uses temporal differences to improve accuracy and reliability. TimedHN models the accumulation process as a continuous-time Markov chain and includes an efficient gradient computation algorithm for optimization. Our simulation experiments demonstrate that TimedHN outperforms current state-of-the-art graph reconstruction methods. We also compare TimedHN with existing methods on a luminal breast cancer dataset, highlighting its potential utility. The Matlab implementation and data are available at https://github.com/puar-playground/TimedHN.

摘要

癌发生图形模型通过分析遗传事件的积累对于理解癌症进展至关重要。这些模型用于识别遗传事件的统计依赖性和时间顺序,这有助于设计靶向治疗。然而,现有的算法在癌发生分析中没有考虑到样本之间的时间差异。本文介绍了定时危险网络(TimedHN),这是一种新的统计模型,它利用时间差异来提高准确性和可靠性。TimedHN 将积累过程建模为连续时间马尔可夫链,并包括用于优化的高效梯度计算算法。我们的仿真实验表明,TimedHN 优于当前最先进的图形重建方法。我们还在乳癌数据集上比较了 TimedHN 与现有方法,突出了它的潜在效用。Matlab 实现和数据可在 https://github.com/puar-playground/TimedHN 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f0c/10019724/7c6f4706da31/pone.0283004.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验