Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea.
Medical Research Collaborating Center, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea.
Eur Radiol. 2023 May;33(5):3144-3155. doi: 10.1007/s00330-023-09534-y. Epub 2023 Mar 16.
To investigate the prognostic value of deep learning (DL)-driven CT fibrosis quantification in idiopathic pulmonary fibrosis (IPF).
Patients diagnosed with IPF who underwent nonenhanced chest CT and spirometry between 2005 and 2009 were retrospectively collected. Proportions of normal (CT-Norm%) and fibrotic lung volume (CT-Fib%) were calculated on CT using the DL software. The correlations of CT-Norm% and CT-Fib% with forced vital capacity (FVC) and diffusion capacity of carbon monoxide (D) were evaluated. The multivariable-adjusted hazard ratios (HRs) of CT-Norm% and CT-Fib% for overall survival were calculated with clinical and physiologic variables as covariates using Cox regression. The feasibility of substituting CT-Norm% for D in the GAP index was investigated using time-dependent areas under the receiver operating characteristic curve (TD-AUCs) at 3 years.
In total, 161 patients (median age [IQR], 68 [62-73] years; 104 men) were evaluated. CT-Norm% and CT-Fib% showed significant correlations with FVC (Pearson's r, 0.40 for CT-Norm% and - 0.37 for CT-Fib%; both p < 0.001) and D (0.52 for CT-Norm% and - 0.46 for CT-Fib%; both p < 0.001). On multivariable Cox regression, both CT-Norm% and CT-Fib% were independent prognostic factors when adjusted to age, sex, smoking status, comorbid chronic diseases, FVC, and D (HRs, 0.98 [95% CI 0.97-0.99; p < 0.001] for CT-Norm% at 3 years and 1.03 [1.01-1.05; p = 0.01] for CT-Fib%). Substituting CT-Norm% for D showed comparable discrimination to the original GAP index (TD-AUC, 0.82 [0.78-0.85] vs. 0.82 [0.79-0.86]; p = 0.75).
CT-Norm% and CT-Fib% calculated using chest CT-based deep learning software were independent prognostic factors for overall survival in IPF.
• Normal and fibrotic lung volume proportions were automatically calculated using commercial deep learning software from chest CT taken from 161 patients diagnosed with idiopathic pulmonary fibrosis. • CT-quantified volumetric parameters from commercial deep learning software were correlated with forced vital capacity (Pearson's r, 0.40 for normal and - 0.37 for fibrotic lung volume proportions) and diffusion capacity of carbon monoxide (Pearson's r, 0.52 and - 0.46, respectively). • Normal and fibrotic lung volume proportions (hazard ratios, 0.98 and 1.04; both p < 0.001) independently predicted overall survival when adjusted for clinical and physiologic variables.
研究深度学习(DL)驱动的 CT 纤维化定量在特发性肺纤维化(IPF)中的预后价值。
回顾性收集了 2005 年至 2009 年间接受非增强胸部 CT 和肺量计检查的诊断为 IPF 的患者。使用 DL 软件在 CT 上计算正常(CT-Norm%)和纤维化肺容积(CT-Fib%)的比例。评估 CT-Norm%和 CT-Fib%与用力肺活量(FVC)和一氧化碳扩散量(D)的相关性。使用 Cox 回归,将临床和生理变量作为协变量,计算 CT-Norm%和 CT-Fib%对总生存的多变量调整后的危险比(HRs)。使用时间依赖性受试者工作特征曲线下面积(TD-AUC)在 3 年时评估用 CT-Norm%替代 D 在 GAP 指数中的可行性。
共评估了 161 名患者(中位年龄[IQR],68[62-73]岁;104 名男性)。CT-Norm%和 CT-Fib%与 FVC(Pearson r,CT-Norm%为 0.40,CT-Fib%为-0.37;均 p<0.001)和 D(0.52 对 CT-Norm%,-0.46 对 CT-Fib%;均 p<0.001)均呈显著相关性。在多变量 Cox 回归中,在调整年龄、性别、吸烟状况、合并慢性疾病、FVC 和 D 后,CT-Norm%和 CT-Fib%均为独立的预后因素(HRs,3 年时 CT-Norm%为 0.98[95%CI 0.97-0.99],CT-Fib%为 1.03[1.01-1.05];均 p<0.001)。用 CT-Norm%替代 D 显示出与原始 GAP 指数相当的鉴别能力(TD-AUC,0.82[0.78-0.85]与 0.82[0.79-0.86];p=0.75)。
基于胸部 CT 的深度学习软件计算的 CT-Norm%和 CT-Fib%是 IPF 患者总体生存的独立预后因素。
从 161 名诊断为特发性肺纤维化的患者的胸部 CT 中,使用商业深度学习软件自动计算正常和纤维化肺容积比例。
商业深度学习软件的 CT 量化容积参数与用力肺活量(Pearson r,正常肺容积比例为 0.40,纤维化肺容积比例为-0.37)和一氧化碳扩散量(Pearson r,分别为 0.52 和-0.46)呈正相关。
在调整临床和生理变量后,正常和纤维化肺容积比例(HRs,0.98 和 1.04;均 p<0.001)独立预测总生存。