Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
Department of Inorganic Spectroscopy, Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany.
Angew Chem Int Ed Engl. 2023 May 15;62(21):e202303525. doi: 10.1002/anie.202303525. Epub 2023 Apr 18.
The electrochemical synthesis of hydrogen peroxide (H O ) via a two-electron (2 e ) oxygen reduction reaction (ORR) process provides a promising alternative to replace the energy-intensive anthraquinone process. Herein, we develop a facile template-protected strategy to synthesize a highly active quinone-rich porous carbon catalyst for H O electrochemical production. The optimized PCC material exhibits remarkable activity and selectivity, of which the onset potential reaches 0.83 V vs. reversible hydrogen electrode in 0.1 M KOH and the H O selectivity is over 95 % in a wide potential range. Comprehensive synchrotron-based near-edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with electrocatalytic characterizations reveals the positive correlation between quinone content and 2 e ORR performance. The effectiveness of chair-form quinone groups as the most efficient active sites is highlighted by the molecule-mimic strategy and theoretical analysis.
通过两电子(2e)氧还原反应(ORR)过程电化学合成过氧化氢(H2O2)为替代能耗密集的蒽醌工艺提供了一种很有前途的替代方法。在此,我们开发了一种简便的模板保护策略,用于合成用于 H2O2电化学生产的高活性富醌多孔碳催化剂。优化的 PCC 材料表现出显著的活性和选择性,其起始电位在 0.1 M KOH 中达到 0.83 V 对可逆氢电极,并且在宽电位范围内 H2O2 的选择性超过 95%。基于同步加速器的近边 X 射线吸收精细结构(NEXAFS)光谱结合电催化特性表明,醌含量与 2e ORR 性能之间存在正相关关系。通过分子模拟策略和理论分析突出了椅型醌基团作为最有效的活性位点的有效性。