School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Division of Physical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea.
Nat Commun. 2023 Mar 17;14(1):1386. doi: 10.1038/s41467-023-36773-w.
InGaN-based micro-light-emitting diodes have a strong potential as a crucial building block for next-generation displays. However, small-size pixels suffer from efficiency degradations, which increase the power consumption of the display. We demonstrate strategies for epitaxial structure engineering carefully considering the quantum barrier layer and electron blocking layer to alleviate efficiency degradations in low current injection regime by reducing the lateral diffusion of injected carriers via reducing the tunneling rate of electrons through the barrier layer and balanced carrier injection. As a result, the fabricated micro-light-emitting diodes show a high external quantum efficiency of 3.00% at 0.1 A/cm for the pixel size of 10 × 10 μm and a negligible J shift during size reduction, which is challenging due to the non-radiative recombination at the sidewall. Furthermore, we verify that our epitaxy strategies can result in the relaxation of self-heating of the micro-light-emitting diodes, where the average pixel temperature was effectively reduced.
基于 InGaN 的微发光二极管作为下一代显示器的关键组成部分具有很大的潜力。然而,小尺寸像素会出现效率降低的问题,从而增加显示器的功耗。我们展示了一种外延结构工程策略,该策略在考虑量子势垒层和电子阻挡层时非常小心,通过降低电子通过势垒层的隧穿速率和平衡载流子注入来减少注入载流子的横向扩散,从而缓解低电流注入状态下的效率降低问题。结果,所制造的微发光二极管在像素尺寸为 10×10 μm 时,在 0.1 A/cm 的电流下表现出 3.00%的高光外量子效率,并且在尺寸缩小过程中几乎没有 J 偏移,这是由于侧壁处的非辐射复合而具有挑战性。此外,我们验证了我们的外延策略可以实现微发光二极管自加热的弛豫,其中平均像素温度得到了有效降低。