Suppr超能文献

利用响应面法从废弃食用油中制备最大量生物柴油,使用基于石灰的掺锌氧化钙催化剂。

Maximizing biodiesel production from waste cooking oil with lime-based zinc-doped CaO using response surface methodology.

机构信息

Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia.

Computational Data Science Program, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia.

出版信息

Sci Rep. 2023 Mar 17;13(1):4430. doi: 10.1038/s41598-023-30961-w.

Abstract

Biodiesel is one of the alternative fuels, commonly produced chemically from oil and methanol using a catalyst. This study aims to maximize biodiesel production from cheap and readily available sources of waste cooking oil (WCO) and lime-based Zinc-doped calcium oxide (Zn-CaO) catalyst prepared with a wet impregnation process. The Zn-CaO nanocatalyst was produced by adding 5% Zn into the calcinated limestone. The morphology, crystal size, and vibrational energies of CaO and Zn-CaO nanocatalysts were determined using SEM, XRD, and FT-IR spectroscopy techniques, respectively. The response surface methodology (RSM), which is based on the box-Behnken design, was used to optimize the key variables of the transesterification reaction. Results showed that when Zn was doped to lime-based CaO, the average crystalline size reduced from 21.14 to 12.51 nm, consequently, structural irregularity and surface area increased. The experimental parameters of methanol to oil molar ratio (14:1), catalyst loading (5% wt.), temperature (57.5 °C), and reaction time (120 min) led to the highest biodiesel conversion of 96.5%. The fuel characteristics of the generated biodiesel fulfilled the American (ASTM D6571) fuel standards. The study suggests the potential use of WCO and lime-based catalyst as efficient and low-cost raw materials for large-scale biodiesel production intended for versatile applications.

摘要

生物柴油是一种替代燃料,通常通过化学方法使用油和甲醇在催化剂的作用下生产。本研究旨在从廉价且易得的废弃食用油 (WCO) 和基于石灰的掺锌氧化钙 (Zn-CaO) 催化剂中最大限度地生产生物柴油,该催化剂采用湿法浸渍法制备。Zn-CaO 纳米催化剂是通过在煅烧石灰石中添加 5%的 Zn 来制备的。使用扫描电子显微镜 (SEM)、X 射线衍射 (XRD) 和傅里叶变换红外光谱 (FT-IR) 光谱技术分别确定 CaO 和 Zn-CaO 纳米催化剂的形态、晶体尺寸和振动能。响应面法(RSM)基于 Box-Behnken 设计,用于优化酯交换反应的关键变量。结果表明,当 Zn 掺杂到基于石灰的 CaO 中时,平均结晶尺寸从 21.14 纳米减小到 12.51 纳米,因此结构不规则性和表面积增加。甲醇与油的摩尔比(14:1)、催化剂负载量(5%wt.)、温度(57.5°C)和反应时间(120 分钟)等实验参数导致生物柴油转化率最高可达 96.5%。生成的生物柴油的燃料特性符合美国(ASTM D6571)燃料标准。该研究表明,WCO 和基于石灰的催化剂作为高效、低成本的原料,可用于大规模生产生物柴油,适用于多种应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ea7/10023746/64cb9d4b86c8/41598_2023_30961_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验