UNICA - Caries Research Unit, Research Department, Universidad El Bosque, Av. Cra 9 No. 131A-02, 110121, Bogotá, Colombia.
Laboratorio de Virología, Vicerrectoría de Investigaciones, Universidad El Bosque, Av. Cra 9 No. 131A-02, 110121, Bogotá, Colombia.
Clin Oral Investig. 2023 Jun;27(6):3221-3231. doi: 10.1007/s00784-023-04937-z. Epub 2023 Mar 18.
The aim of this study was to test the plausibility of using the ΦX174 bacteriophage as a tracer of viral aerosols spreading in a dental aerosol-generating procedure (AGP) model.
ΦX174 bacteriophage (~ 10 plaque-forming units (PFU)/mL) was added into instrument irrigation reservoirs and aerosolized during class-IV cavity preparations followed by composite fillings on natural upper-anterior teeth (n = 3) in a phantom head. Droplets/aerosols were sampled through a passive approach that consisted of Escherichia coli strain C600 cultures immersed in a LB top agar layer in Petri dishes (PDs) in a double-layer technique. In addition, an active approach consisted of E coli C600 on PDs sets mounted in a six-stage cascade Andersen impactor (AI) (simulating human inhalation). The AI was located at 30 cm from the mannequin during AGP and afterwards at 1.5 m. After collection PDs were incubated overnight (18 h at 37 °C) and bacterial lysis was quantified.
The passive approach disclosed PFUs mainly concentrated over the dental practitioner, on the mannequin's chest and shoulder and up to 90 cm apart, facing the opposite side of the AGP's source (around the spittoon). The maximum aerosol spreading distance was 1.5 m in front of the mannequin's mouth. The active approach disclosed collection of PFUs corresponding to stages (and aerodynamic diameters) 5 (1.1-2.1 µm) and 6 (0.65-1.1 µm), mimicking access to the lower respiratory airways.
The ΦX174 bacteriophage can be used as a traceable viral surrogate in simulated studies contributing to understand dental bioaerosol's behavior, its spreading, and its potential threat for upper and lower respiratory tract.
The probability to find infectious virus during AGPs is high. This suggests the need to continue characterizing the spreading viral agents in different clinical settings through combination of passive and active approaches. In addition, subsequent identification and implementation of virus-related mitigation strategies is relevant to avoid occupational virus infections.
本研究旨在检验利用 ΦX174 噬菌体作为示踪剂来追踪在牙科气溶胶产生过程(AGP)模型中传播的病毒气溶胶的合理性。
在对天然上前牙进行 IV 类窝洞预备和复合填充的过程中,将 ΦX174 噬菌体(~10 噬菌斑形成单位(PFU)/mL)加入器械冲洗储液器中进行雾化。在人工头内对 3 例(n=3)进行实验。通过被动方法采样,该方法包括将大肠杆菌 C600 培养物浸泡在培养皿(PD)的 LB 顶层琼脂层中,以双层技术收集飞沫/气溶胶。此外,还采用主动方法,即将 PD 上的大肠杆菌 C600 置于六级安德森撞击器(AI)中(模拟人体吸入)。AGP 期间,AI 位于模特 30cm 处,之后位于 1.5m 处。收集后,PD 培养过夜(37°C 下 18 小时)并定量细菌裂解。
被动方法揭示 PFU 主要集中在牙医、模特的胸部和肩部,以及距离 AGP 源对面 90cm 处(在痰盂周围)。最大气溶胶扩散距离为模特口前 1.5m。主动方法揭示收集到的 PFU 对应于第 5 级(和空气动力学直径)和第 6 级(0.65-1.1μm),模拟进入下呼吸道。
ΦX174 噬菌体可用作模拟研究中的可追踪病毒替代物,有助于了解牙科生物气溶胶的行为、传播及其对上呼吸道和下呼吸道的潜在威胁。
在 AGP 期间发现感染性病毒的可能性很高。这表明需要通过结合被动和主动方法,在不同的临床环境中继续对传播的病毒剂进行特征描述。此外,识别和实施与病毒相关的缓解策略对于避免职业性病毒感染具有重要意义。