Suppr超能文献

基于支持向量机学习的免疫检查点抑制剂联合化疗治疗非小细胞肺癌的多参数预测模型。

Multiparameter prediction model of immune checkpoint inhibitors combined with chemotherapy for non-small cell lung cancer based on support vector machine learning.

机构信息

School of Medicine, Southeast University, Nanjing, 210009, China.

Department of Respiratory and Critical Care Medicine, Southeast University Zhongda Hospital, Nanjing, 210009, China.

出版信息

Sci Rep. 2023 Mar 18;13(1):4469. doi: 10.1038/s41598-023-31189-4.

Abstract

The reliable predictive markers to identify which patients with advanced non-small cell lung cancer tumors (NSCLC) will achieve durable clinical benefit (DCB) for chemo-immunotherapy are needed. In this retrospective study, we collected radiomics and clinical signatures from 94 patients with advanced NSCLC treated with anti-PD-1/PD-L1 combined with chemotherapy from January 1, 2018 to May 31, 2022. Radiomics variables were extracted from pretreatment CT and selected by Spearman correlation coefficients and clinical features by Logistics regression analysis. We performed effective diagnostic algorithms principal components analysis (PCA) and support vector machine (SVM) to develop an early classification model among DCB and non-durable benefit (NDB) groups. A total of 26 radiomics features and 6 clinical features were selected, and then principal component analysis was used to obtain 6 principal components for SVM building. RC-SVM achieved prediction accuracy with AUC of 0.91 (95% CI 0.87-0.94) in the training set, 0.73 (95% CI 0.61-0.85) in the cross-validation set, 0.84 (95% CI 0.80-0.89) in the external validation set. The new method of RC-SVM model based on radiomics-clinical signatures provides a significant additive value on response prediction in patients with NSCLC preceding chemo-immunotherapy.

摘要

需要可靠的预测标志物来识别哪些晚期非小细胞肺癌(NSCLC)患者将从化疗免疫治疗中获得持久的临床获益(DCB)。在这项回顾性研究中,我们收集了 94 名接受抗 PD-1/PD-L1 联合化疗治疗的晚期 NSCLC 患者的放射组学和临床特征,这些患者的治疗时间为 2018 年 1 月 1 日至 2022 年 5 月 31 日。从预处理 CT 中提取放射组学变量,并通过 Spearman 相关系数进行选择,通过 Logistics 回归分析选择临床特征。我们进行了有效的诊断算法主成分分析(PCA)和支持向量机(SVM),以在 DCB 和非持久获益(NDB)组之间开发早期分类模型。共选择了 26 个放射组学特征和 6 个临床特征,然后使用主成分分析为 SVM 构建获得 6 个主成分。RC-SVM 在训练集中的预测准确性为 AUC 0.91(95%CI 0.87-0.94),在交叉验证集中为 0.73(95%CI 0.61-0.85),在外部验证集中为 0.84(95%CI 0.80-0.89)。基于放射组学-临床特征的 RC-SVM 模型的新方法为化疗免疫治疗前 NSCLC 患者的反应预测提供了显著的附加价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d93/10024716/9fbc1479ac5f/41598_2023_31189_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验