Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands.
Commun Biol. 2023 Mar 18;6(1):286. doi: 10.1038/s42003-023-04648-x.
Well-known haemodynamic resting-state networks are better mirrored in power correlation networks than phase coupling networks in electrophysiological data. However, what do these power correlation networks reflect? We address this long-outstanding question in neuroscience using rigorous mathematical analysis, biophysical simulations with ground truth and application of these mathematical concepts to empirical magnetoencephalography (MEG) data. Our mathematical derivations show that for two non-Gaussian electrophysiological signals, their power correlation depends on their coherence, cokurtosis and conjugate-coherence. Only coherence and cokurtosis contribute to power correlation networks in MEG data, but cokurtosis is less affected by artefactual signal leakage and better mirrors haemodynamic resting-state networks. Simulations and MEG data show that cokurtosis may reflect co-occurrent bursting events. Our findings shed light on the origin of the complementary nature of power correlation networks to phase coupling networks and suggests that the origin of resting-state networks is partly reflected in co-occurent bursts in neuronal activity.
在电生理数据中,与相位耦合网络相比,众所周知的血流动力学静息状态网络在功率相关网络中得到更好的反映。然而,这些功率相关网络反映了什么?我们使用严格的数学分析、具有真实值的生物物理模拟以及将这些数学概念应用于经验性脑磁图(MEG)数据,来解决这个长期存在的神经科学问题。我们的数学推导表明,对于两个非高斯电生理信号,它们的功率相关取决于它们的相干性、协峰度和共轭相干性。只有相干性和协峰度对 MEG 数据中的功率相关网络有贡献,但协峰度受人为信号泄漏的影响较小,并且更好地反映了血流动力学静息状态网络。模拟和 MEG 数据表明,协峰度可能反映了同时发生的爆发事件。我们的发现揭示了功率相关网络与相位耦合网络互补性的起源,并表明静息状态网络的起源在一定程度上反映在神经元活动中的同时爆发中。