Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
Adv Mater. 2023 Jun;35(23):e2301449. doi: 10.1002/adma.202301449. Epub 2023 Apr 25.
Solving materials engineering tasks is often hindered by limited information, such as in inverse problems with only boundary data information or design tasks with a simple objective but a vast search space. To address these challenges, multiple deep learning (DL) architectures are leveraged to predict missing mechanical information given limited known data in part of the domain, and further characterize the composite geometries from the recovered mechanical fields for 2D and 3D complex microstructures. In 2D, a conditional generative adversarial network (GAN) is utilized to complete partially masked field maps and predict the composite geometry with convolutional models with great accuracy and generality by making precise predictions on field data with mixed stress/strain components, hierarchical geometries, distinct materials properties and various types of microstructures including ill-posed inverse problems. In 3D, a Transformer-based architecture is implemented to predict complete 3D mechanical fields from input field snapshots. The model manifests excellent performance regardless of microstructural complexity and recovers the entire bulk field even from a single surface field image, allowing internal structural characterization from only boundary measurements. The whole frameworks provide efficient ways for analysis and design with incomplete information and allow the direct inverse translation from properties back to materials structures.
解决材料工程任务通常会受到有限信息的阻碍,例如只有边界数据信息的反问题或目标简单但搜索空间很大的设计任务。为了解决这些挑战,利用多种深度学习(DL)架构来预测在域的一部分中给定有限已知数据时缺失的机械信息,并进一步从恢复的机械场中对 2D 和 3D 复杂微结构进行复合材料几何形状的特征描述。在 2D 中,利用条件生成对抗网络(GAN)来完成部分掩蔽场图,并通过对具有混合应力/应变分量、层次化几何形状、不同材料特性和各种类型微结构的场数据进行精确预测,利用卷积模型以很高的精度和通用性来预测复合材料几何形状,包括不适定的反问题。在 3D 中,实现了一种基于 Transformer 的架构,可从输入场快照预测完整的 3D 机械场。该模型无论微观结构的复杂性如何都表现出出色的性能,甚至可以从单个表面场图像中恢复整个体场,仅从边界测量值即可实现内部结构特征描述。整个框架为具有不完整信息的分析和设计提供了高效的方法,并允许从属性直接反向转换为材料结构。