Suppr超能文献

基于物理信息的 U-Net 模型在异质材料隐藏弹性中的应用

Physics-informed UNets for discovering hidden elasticity in heterogeneous materials.

机构信息

Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ, USA.

Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ, USA; Department of Aerospace and Mechanical Engineering, University of Arizona College of Engineering, Tucson, AZ, USA; Department of Mechanical Engineering, University of California Riverside, Riverside, CA, USA.

出版信息

J Mech Behav Biomed Mater. 2024 Feb;150:106228. doi: 10.1016/j.jmbbm.2023.106228. Epub 2023 Nov 10.

Abstract

Soft biological tissues often have complex mechanical properties due to variation in structural components. In this paper, we develop a novel UNet-based neural network model for inversion in elasticity (El-UNet) to infer the spatial distributions of mechanical parameters from strain maps as input images, normal stress boundary conditions, and domain physics information. We show superior performance - both in terms of accuracy and computational cost - by El-UNet compared to fully-connected physics-informed neural networks in estimating unknown parameters and stress distributions for isotropic linear elasticity. We characterize different variations of El-UNet and propose a self-adaptive spatial loss weighting approach. To validate our inversion models, we performed various finite-element simulations of isotropic domains with heterogenous distributions of material parameters to generate synthetic data. El-UNet is faster and more accurate than the fully-connected physics-informed implementation in resolving the distribution of unknown fields. Among the tested models, the self-adaptive spatially weighted models had the most accurate reconstructions in equal computation times. The learned spatial weighting distribution visibly corresponded to regions that the unweighted models were resolving inaccurately. Our work demonstrates a computationally efficient inversion algorithm for elasticity imaging using convolutional neural networks and presents a potential fast framework for three-dimensional inverse elasticity problems that have proven unachievable through previously proposed methods.

摘要

软生物组织由于结构成分的变化而具有复杂的机械性能。在本文中,我们开发了一种新的基于 UNet 的神经网络模型,即弹性反演的 UNet(El-UNet),用于根据应变图作为输入图像、法向应力边界条件和域物理信息,推断力学参数的空间分布。与全连接物理信息神经网络相比,El-UNet 在估计各向同性线弹性的未知参数和应力分布方面具有更高的性能——无论是在准确性还是计算成本方面。我们对不同的 El-UNet 变体进行了特征描述,并提出了一种自适应空间损失加权方法。为了验证我们的反演模型,我们对各向同性域进行了各种有限元模拟,这些域具有不均匀的材料参数分布,以生成合成数据。El-UNet 在求解未知场的分布方面比全连接物理信息实现更快、更准确。在所测试的模型中,自适应空间加权模型在相等的计算时间内具有最准确的重建。学习到的空间加权分布与未加权模型不准确地求解的区域明显对应。我们的工作展示了一种使用卷积神经网络进行弹性成像的计算高效反演算法,并为三维反弹性问题提供了一个潜在的快速框架,这些问题通过以前提出的方法是无法实现的。

相似文献

4
Learning hidden elasticity with deep neural networks.通过深度神经网络学习隐式弹性。
Proc Natl Acad Sci U S A. 2021 Aug 3;118(31). doi: 10.1073/pnas.2102721118.

本文引用的文献

6
Learning hidden elasticity with deep neural networks.通过深度神经网络学习隐式弹性。
Proc Natl Acad Sci U S A. 2021 Aug 3;118(31). doi: 10.1073/pnas.2102721118.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验