Liu Xuling, Qin Zhiran, Wang Linqing, Xie Xiaoting, Fu Yifang, Yu Jianhai, Liang Zuxin, He Xiaoen, Li Jingshu, Dai Hong, Yao Jinxiu, Wu Qinghua, Xiao Weiwei, Zhu Li, Wan Chengsong, Zhang Bao, Zhao Wei
BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
Guangzhou SaveTech Co., Ltd., Guangzhou 510070, China.
J Biosaf Biosecur. 2023 Mar;5(1):32-38. doi: 10.1016/j.jobb.2023.02.001. Epub 2023 Mar 15.
Aerosol transmission is an important disease transmission route and has been especially pertinent to hospital and biosafety laboratories during the SARS-CoV-2 pandemic. The thermal resistance of airborne SARS-CoV-2 is lower than that of spores, which are often used to test the effectiveness of SARS-CoV-2 and other pathogen disinfection methods. Herein, we propose a new method to test the disinfection ability of a flowing air disinfector (a digital electromagnetic induction air heater) using spores. The study provides an alternative air disinfection test method. The new test system combined an aerosol generator and a respiratory filter designed in-house and could effectively recover spores on the filter membrane at the air outlet after passing through the flowing air disinfector. The total number of bacterial spores used in the test was within the range of 5 × 10-5 × 10 colony-forming units (CFUs) specified in the technical standard for disinfection. The calculation was based on the calculation method in Air Disinfection Effect Appraisal Test in Technical Standard for Disinfection (2002 Edition). At an air speed of 3.5 m/s, we used a digital electromagnetic induction air heater to disinfect flowing air containing 4.100 × 10 CFUs of spores and determined that the minimum disinfection temperature was 350 °C for a killing rate of 99.99%. At 400 °C, additional experiments using higher spore concentrations (4.700 × 10 ± 1.871 × 10 CFU) and a higher airspeed (4 m/s) showed that the killing rate remained>99.99%. spores, as a biological indicator for testing the efficiency of dry-heat sterilization, were killed by the high temperatures used in this system. The proposed method used to test the flowing air disinfector is simple, stable, and effective. This study provides a reference for the development of test systems that can assess the disinfection ability of flowing air disinfectors.
气溶胶传播是一种重要的疾病传播途径,在新型冠状病毒肺炎大流行期间,对医院和生物安全实验室尤为重要。空气传播的新型冠状病毒的热抵抗力低于孢子,而孢子常用于测试新型冠状病毒及其他病原体消毒方法的有效性。在此,我们提出一种使用孢子测试流动空气消毒器(数字电磁感应空气加热器)消毒能力的新方法。该研究提供了一种替代性的空气消毒测试方法。新的测试系统结合了气溶胶发生器和自行设计的呼吸过滤器,在空气通过流动空气消毒器后,能够有效地回收出气口滤膜上的孢子。测试中使用的细菌孢子总数在消毒技术标准规定的5×10 - 5×10菌落形成单位(CFU)范围内。计算基于《消毒技术规范(2002年版)》中空气消毒效果评价试验的计算方法。在风速为3.5米/秒时,我们使用数字电磁感应空气加热器对含有4.100×10 CFU孢子的流动空气进行消毒,确定杀灭率达到99.99%时的最低消毒温度为350℃。在400℃时,使用更高孢子浓度(4.700×10±1.871×10 CFU)和更高风速(4米/秒)的额外实验表明,杀灭率仍>99.99%。孢子作为测试干热灭菌效率的生物指示剂,在该系统使用的高温下被杀死。所提出的用于测试流动空气消毒器的方法简单、稳定且有效。本研究为开发能够评估流动空气消毒器消毒能力的测试系统提供了参考。