Suppr超能文献

通过热空气消毒系统捕获并杀灭空气中的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)以控制新型冠状病毒肺炎(COVID-19)的传播

Catching and killing of airborne SARS-CoV-2 to control spread of COVID-19 by a heated air disinfection system.

作者信息

Yu L, Peel G K, Cheema F H, Lawrence W S, Bukreyeva N, Jinks C W, Peel J E, Peterson J W, Paessler S, Hourani M, Ren Z

机构信息

Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX 77204, USA.

Medistar Corporation, 7670 Woodway, Suite 160, Houston, TX 77063, USA.

出版信息

Mater Today Phys. 2020 Dec;15:100249. doi: 10.1016/j.mtphys.2020.100249. Epub 2020 Jul 7.

Abstract

Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) air-conditioning systems poses a significant threat for the continued escalation of the current coronavirus disease (COVID-19) pandemic. Considering that SARS-CoV-2 cannot tolerate temperatures above 70 °C, here we designed and fabricated efficient filters based on heated nickel (Ni) foam to catch and kill SARS-CoV-2. Virus test results revealed that 99.8% of the aerosolized SARS-CoV-2 was caught and killed by a single pass through a novel Ni-foam-based filter when heated up to 200 °C. In addition, the same filter was also used to catch and kill 99.9% of , an airborne spore. This study paves the way for preventing transmission of SARS-CoV-2 and other highly infectious airborne agents in closed environments.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)通过空调系统进行空气传播,对当前冠状病毒病(COVID-19)大流行的持续升级构成重大威胁。鉴于SARS-CoV-2无法耐受70°C以上的温度,我们在此设计并制造了基于加热镍泡沫的高效过滤器,以捕获并杀死SARS-CoV-2。病毒测试结果显示,当加热到200°C时,单次通过新型镍泡沫基过滤器,99.8%的雾化SARS-CoV-2被捕获并杀死。此外,同一过滤器还用于捕获并杀死99.9%的空气传播孢子。本研究为在封闭环境中预防SARS-CoV-2和其他高传染性空气传播病原体的传播铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da59/7340062/691a7e869a81/fx1_lrg.jpg

相似文献

1
Catching and killing of airborne SARS-CoV-2 to control spread of COVID-19 by a heated air disinfection system.
Mater Today Phys. 2020 Dec;15:100249. doi: 10.1016/j.mtphys.2020.100249. Epub 2020 Jul 7.
3
SARS-CoV-2 airborne transmission: a review of risk factors and possible preventative measures using air purifiers.
Environ Sci Process Impacts. 2022 Dec 14;24(12):2191-2216. doi: 10.1039/d2em00333c.
4
Effectiveness of HEPA Filters at Removing Infectious SARS-CoV-2 from the Air.
mSphere. 2022 Aug 31;7(4):e0008622. doi: 10.1128/msphere.00086-22. Epub 2022 Aug 10.
5
Impact of sampling and storage stress on the recovery of airborne SARS-CoV-2 virus surrogate captured by filtration.
J Occup Environ Hyg. 2021 Sep;18(9):461-475. doi: 10.1080/15459624.2021.1948047. Epub 2021 Aug 17.
6
Nano-treatment of HEPA filters in COVID-19 isolation rooms in an academic medical center in Saudi Arabia.
J Infect Public Health. 2022 Sep;15(9):937-941. doi: 10.1016/j.jiph.2022.07.004. Epub 2022 Jul 19.
9
SARS-CoV-2 in environmental perspective: Occurrence, persistence, surveillance, inactivation and challenges.
Chem Eng J. 2021 Feb 1;405:126893. doi: 10.1016/j.cej.2020.126893. Epub 2020 Sep 4.
10
Inactivation of airborne SARS-CoV-2 by thyme volatile oil vapor phase.
J Virol Methods. 2023 Feb;312:114660. doi: 10.1016/j.jviromet.2022.114660. Epub 2022 Nov 24.

引用本文的文献

1
Bandgap regulation and doping modification of Ga Cr Se nanosheets.
RSC Adv. 2024 Jun 11;14(26):18685-18694. doi: 10.1039/d4ra03028a. eCollection 2024 Jun 6.
2
Elucidating the role of environmental management of forests, air quality, solid waste and wastewater on the dissemination of SARS-CoV-2.
Hyg Environ Health Adv. 2022 Sep;3:100006. doi: 10.1016/j.heha.2022.100006. Epub 2022 May 10.
4
A simple and effective aerosol pathogen disinfection test for a flowing air disinfector.
J Biosaf Biosecur. 2023 Mar;5(1):32-38. doi: 10.1016/j.jobb.2023.02.001. Epub 2023 Mar 15.
5
A novel disinfected Trombe wall for space heating and virus inactivation: Concept and performance investigation.
Appl Energy. 2021 Jun 1;291:116789. doi: 10.1016/j.apenergy.2021.116789. Epub 2021 Mar 21.
6
Enhanced Inactivation of Pseudoparticles Containing SARS-CoV-2 S Protein Using Magnetic Nanoparticles and an Alternating Magnetic Field.
ACS Appl Bio Mater. 2022 Nov 21;5(11):5140-5147. doi: 10.1021/acsabm.2c00522. Epub 2022 Oct 31.
7
Melamine sponge-based copper-organic framework (Cu-CPP) as a multi-functional filter for air purifiers.
Korean J Chem Eng. 2022;39(4):954-962. doi: 10.1007/s11814-021-1000-4. Epub 2022 Feb 3.
8
Computational fluid dynamics simulation of SARS-CoV-2 aerosol dispersion inside a grocery store.
Build Environ. 2022 Feb 1;209:108652. doi: 10.1016/j.buildenv.2021.108652. Epub 2021 Dec 9.
9
10
Disinfection methods against SARS-CoV-2: a systematic review.
J Hosp Infect. 2022 Jan;119:84-117. doi: 10.1016/j.jhin.2021.07.014. Epub 2021 Oct 18.

本文引用的文献

1
Stability of SARS-CoV-2 in different environmental conditions.
Lancet Microbe. 2020 May;1(1):e10. doi: 10.1016/S2666-5247(20)30003-3. Epub 2020 Apr 2.
2
Reducing transmission of SARS-CoV-2.
Science. 2020 Jun 26;368(6498):1422-1424. doi: 10.1126/science.abc6197. Epub 2020 May 27.
3
Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic.
Science. 2020 Jul 17;369(6501):315-319. doi: 10.1126/science.abc2535. Epub 2020 May 18.
4
Beat COVID-19 through innovation.
Science. 2020 May 8;368(6491):553. doi: 10.1126/science.abc5792.
5
Can N95 Respirators Be Reused after Disinfection? How Many Times?
ACS Nano. 2020 May 26;14(5):6348-6356. doi: 10.1021/acsnano.0c03597. Epub 2020 May 5.
6
Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals.
Nature. 2020 Jun;582(7813):557-560. doi: 10.1038/s41586-020-2271-3. Epub 2020 Apr 27.
7
Clinical and epidemiological features of COVID-19 family clusters in Beijing, China.
J Infect. 2020 Aug;81(2):e26-e30. doi: 10.1016/j.jinf.2020.04.018. Epub 2020 Apr 23.
8
Cytokine release syndrome in severe COVID-19.
Science. 2020 May 1;368(6490):473-474. doi: 10.1126/science.abb8925. Epub 2020 Apr 17.
9
Combating COVID-19: health equity matters.
Nat Med. 2020 Apr;26(4):458. doi: 10.1038/s41591-020-0823-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验