Huang Xianwu, Wang Yuxiao, Shang Haili, Zhang Jinshan
School of Information Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China.
Key Laboratory of Coal Processing and Efficient Utilization, China University of Mining and Technology, Ministry of Education, Xuzhou 221116, China.
ACS Omega. 2023 Mar 1;8(10):9547-9554. doi: 10.1021/acsomega.2c08293. eCollection 2023 Mar 14.
Visual feature information regarding flotation foam is crucial for the flotation process. Owing to a large amount of noise and blur in the foam images collected in the floatation field, feature extraction and segmentation of foam images pose considerable challenges. Furthermore, the visual properties of foam are strongly correlated with current flotation conditions. Therefore, this study presents a method to repair blurred pixels in foam images. In addition to enhancing the image dataset necessary for network model training, the restored images can provide high-quality images extracting foam-feature information. In addition, this research presents a novel fifth-order residual structure that enlarges the network structure by stacking, enhancing the learning ability of complex networks. Experimental results demonstrate that the suggested method can achieve a satisfactory repair effect for foam images under various blurring conditions, laying a foundation for guiding the intelligent adjustment of flotation field parameters.
关于浮选泡沫的视觉特征信息对于浮选过程至关重要。由于在浮选现场收集的泡沫图像中存在大量噪声和模糊,泡沫图像的特征提取和分割面临相当大的挑战。此外,泡沫的视觉特性与当前的浮选条件密切相关。因此,本研究提出了一种修复泡沫图像中模糊像素的方法。除了增强网络模型训练所需的图像数据集外,恢复后的图像还可以提供用于提取泡沫特征信息的高质量图像。此外,本研究提出了一种新颖的五阶残差结构,通过堆叠扩大网络结构,增强复杂网络的学习能力。实验结果表明,所提方法能够在各种模糊条件下对泡沫图像实现令人满意的修复效果,为指导浮选现场参数的智能调整奠定了基础。