Suppr超能文献

探索心境发作中疾病活动的数字生物标志物:假设生成和模型开发研究。

Exploring Digital Biomarkers of Illness Activity in Mood Episodes: Hypotheses Generating and Model Development Study.

机构信息

Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.

Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.

出版信息

JMIR Mhealth Uhealth. 2023 May 4;11:e45405. doi: 10.2196/45405.

Abstract

BACKGROUND

Depressive and manic episodes within bipolar disorder (BD) and major depressive disorder (MDD) involve altered mood, sleep, and activity, alongside physiological alterations wearables can capture.

OBJECTIVE

Firstly, we explored whether physiological wearable data could predict (aim 1) the severity of an acute affective episode at the intra-individual level and (aim 2) the polarity of an acute affective episode and euthymia among different individuals. Secondarily, we explored which physiological data were related to prior predictions, generalization across patients, and associations between affective symptoms and physiological data.

METHODS

We conducted a prospective exploratory observational study including patients with BD and MDD on acute affective episodes (manic, depressed, and mixed) whose physiological data were recorded using a research-grade wearable (Empatica E4) across 3 consecutive time points (acute, response, and remission of episode). Euthymic patients and healthy controls were recorded during a single session (approximately 48 h). Manic and depressive symptoms were assessed using standardized psychometric scales. Physiological wearable data included the following channels: acceleration (ACC), skin temperature, blood volume pulse, heart rate (HR), and electrodermal activity (EDA). Invalid physiological data were removed using a rule-based filter, and channels were time aligned at 1-second time units and segmented at window lengths of 32 seconds, as best-performing parameters. We developed deep learning predictive models, assessed the channels' individual contribution using permutation feature importance analysis, and computed physiological data to psychometric scales' items normalized mutual information (NMI). We present a novel, fully automated method for the preprocessing and analysis of physiological data from a research-grade wearable device, including a viable supervised learning pipeline for time-series analyses.

RESULTS

Overall, 35 sessions (1512 hours) from 12 patients (manic, depressed, mixed, and euthymic) and 7 healthy controls (mean age 39.7, SD 12.6 years; 6/19, 32% female) were analyzed. The severity of mood episodes was predicted with moderate (62%-85%) accuracies (aim 1), and their polarity with moderate (70%) accuracy (aim 2). The most relevant features for the former tasks were ACC, EDA, and HR. There was a fair agreement in feature importance across classification tasks (Kendall W=0.383). Generalization of the former models on unseen patients was of overall low accuracy, except for the intra-individual models. ACC was associated with "increased motor activity" (NMI>0.55), "insomnia" (NMI=0.6), and "motor inhibition" (NMI=0.75). EDA was associated with "aggressive behavior" (NMI=1.0) and "psychic anxiety" (NMI=0.52).

CONCLUSIONS

Physiological data from wearables show potential to identify mood episodes and specific symptoms of mania and depression quantitatively, both in BD and MDD. Motor activity and stress-related physiological data (EDA and HR) stand out as potential digital biomarkers for predicting mania and depression, respectively. These findings represent a promising pathway toward personalized psychiatry, in which physiological wearable data could allow the early identification and intervention of mood episodes.

摘要

背景

双相情感障碍(BD)和重度抑郁症(MDD)中的抑郁和躁狂发作涉及情绪、睡眠和活动的改变,以及可穿戴设备捕捉到的生理变化。

目的

首先,我们探索了生理可穿戴数据是否可以预测(目标 1)个体水平上急性情感发作的严重程度,以及(目标 2)不同个体急性情感发作和缓解期的极性。其次,我们探索了哪些生理数据与先前的预测相关,在患者之间的泛化,以及情感症状与生理数据之间的关联。

方法

我们进行了一项前瞻性探索性观察研究,包括处于急性情感发作(躁狂、抑郁和混合)的 BD 和 MDD 患者,他们的生理数据使用研究级别的可穿戴设备(Empatica E4)在 3 个连续时间点(急性、反应和发作缓解)进行记录。缓解期的患者和健康对照组在单次就诊中进行记录(大约 48 小时)。使用标准化心理计量量表评估躁狂和抑郁症状。生理可穿戴数据包括以下通道:加速度(ACC)、皮肤温度、血流脉冲、心率(HR)和皮肤电活动(EDA)。使用基于规则的过滤器去除无效的生理数据,并以 1 秒的时间单位对齐通道,并将窗口长度分段为 32 秒,作为最佳表现参数。我们开发了深度学习预测模型,使用排列特征重要性分析评估通道的个体贡献,并计算生理数据与心理计量量表项目的归一化互信息(NMI)。我们提出了一种新的、全自动的方法,用于处理和分析研究级可穿戴设备的生理数据,包括用于时间序列分析的可行的监督学习管道。

结果

总共分析了 12 名患者(躁狂、抑郁、混合和缓解期)和 7 名健康对照组(平均年龄 39.7,SD 12.6 岁;6/19,32%女性)的 35 个会话(1512 小时)。情绪发作的严重程度可以以中等(62%-85%)的准确度预测(目标 1),其极性可以以中等(70%)的准确度预测(目标 2)。前者任务的最相关特征是 ACC、EDA 和 HR。分类任务之间的特征重要性具有较好的一致性(Kendall W=0.383)。以前模型在未见患者中的泛化准确性总体较低,除了个体内模型。ACC 与“增加的运动活动”(NMI>0.55)、“失眠”(NMI=0.6)和“运动抑制”(NMI=0.75)相关。EDA 与“攻击性行为”(NMI=1.0)和“精神焦虑”(NMI=0.52)相关。

结论

可穿戴设备的生理数据显示出定量识别躁狂和抑郁发作以及特定症状的潜力,无论是在 BD 还是 MDD 中。与运动活动和压力相关的生理数据(EDA 和 HR)分别作为躁狂和抑郁的潜在数字生物标志物脱颖而出。这些发现代表了个性化精神病学的一个有希望的途径,其中生理可穿戴数据可以允许早期识别和干预情绪发作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffea/10196899/fea9b7714044/mhealth_v11i1e45405_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验