Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany.
Acc Chem Res. 2023 Apr 4;56(7):810-820. doi: 10.1021/acs.accounts.2c00804. Epub 2023 Mar 21.
Traditional cell biological techniques are not readily suitable for studying lipid signaling events because genetic perturbations are much slower than the interconversion of lipids in complex metabolic networks. For this reason, novel chemical biological approaches have been developed. One approach is to chemically modify a lipid with a so-called "caging group" that renders it inactive, but this cage can be removed photochemically inside cells to release the bioactive molecule. These caged compounds offer unique advantages for studying the kinetics of cellular biochemistry and have been extensively used in the past. However, a limitation of conventional caged compounds is their ability to diffuse freely inside the cell, which does not permit localized activation below optical precision. This poses a challenge for studying lipid signaling as lipid function inside cells is tightly linked to their parent membrane. An ideal lipid probe should, therefore, be restricted to a single organelle membrane or preferentially to a single leaflet. We first demonstrated the plasma-membrane-specific photorelease of fatty acids by employing sulfonated caging groups. Using these caged fatty acid probes we demonstrated that lipid localization determines signaling outcome. Generalizing this approach, we designed a so-called "click cage" that can be coupled to lipids and offers the possibility to attach organelle targeting groups via click chemistry. Using this strategy, we have synthesized plasma membrane, lysosomal, mitochondria, and endoplasmic-reticulum-targeted lipids that can be used to dissect organelle-specific signaling events. To reduce the synthetic effort associated with generating caged compounds, we designed a coumarin triflate reagent that allows the direct functionalization of phosphate- or carboxylate-containing compounds. With this novel reagent, we synthesized a small library of photocaged G-protein-coupled receptor (GPCR) ligands to study the underlying lipid signaling dynamics. Most recently, we have focused on quantifying the kinetics of lipid signaling for different diacylglycerol (DAG) species using plasma-membrane-targeted caged DAGs. Using this approach, we quantitatively measured lipid-protein affinities and lipid transbilayer dynamics in living cells. After analyzing DAGs with different acyl chain length and saturation degree, we discovered that affinities can vary by up to an order of magnitude. This finding clearly shows that cells are able to distinguish between individual DAG species, thereby demonstrating that lipid diversity matters in cellular signal processing. Although the recent advances have yielded valuable tools to study lipid signaling, challenges remain on specifically targeting the different leaflets of organelle membranes. Furthermore, it is necessary to simplify the experimental approaches required for parametrizing and corroborating quantitative kinetic models of lipid signaling. In the future, we envision that the application of leaflet-specific caged lipids to model membrane systems will be of crucial importance for understanding lipid asymmetry.
传统的细胞生物学技术并不适合研究脂质信号事件,因为遗传干扰比复杂代谢网络中脂质的相互转化要慢得多。出于这个原因,人们开发了新的化学生物学方法。一种方法是用所谓的“笼状基团”化学修饰脂质,使其失去活性,但这种笼状基团可以在细胞内光化学去除,从而释放出生物活性分子。这些笼状化合物为研究细胞生物化学的动力学提供了独特的优势,在过去得到了广泛的应用。然而,传统笼状化合物的一个局限性是它们能够在细胞内自由扩散,这使得光学精度以下的局部激活变得不可能。这对研究脂质信号传递构成了挑战,因为脂质在细胞内的功能与其母体膜紧密相关。因此,理想的脂质探针应该被限制在单个细胞器膜上,或者更倾向于靶向单个脂质层。我们首先通过使用磺化笼状基团证明了脂肪酸的质膜特异性光释放。使用这些笼状脂肪酸探针,我们证明了脂质定位决定了信号转导的结果。推广这种方法,我们设计了一种所谓的“点击笼”,可以与脂质偶联,并通过点击化学连接细胞器靶向基团。使用这种策略,我们合成了质膜、溶酶体、线粒体和内质网靶向的脂质,可以用于剖析细胞器特异性信号事件。为了减少与生成笼状化合物相关的合成工作量,我们设计了一种香豆素三氟甲磺酸酯试剂,允许对含磷酸或羧基的化合物进行直接功能化。使用这种新型试剂,我们合成了一个小的光笼化 G 蛋白偶联受体 (GPCR) 配体文库,以研究潜在的脂质信号转导动力学。最近,我们专注于使用质膜靶向的光笼化二酰基甘油 (DAG) 来定量测量不同 DAG 物种的脂质信号转导动力学。使用这种方法,我们在活细胞中定量测量了脂质-蛋白亲和力和脂质跨膜动力学。在分析了具有不同酰基链长度和饱和度的 DAG 后,我们发现亲和力的变化幅度可达一个数量级。这一发现清楚地表明,细胞能够区分不同的 DAG 物种,从而证明了脂质多样性在细胞信号处理中是很重要的。尽管最近的进展为研究脂质信号传递提供了有价值的工具,但在专门针对细胞器膜的不同叶层进行靶向定位方面仍然存在挑战。此外,有必要简化用于参数化和证实脂质信号转导定量动力学模型的实验方法。未来,我们预计叶层特异性笼状脂质在模拟膜系统中的应用对于理解脂质不对称性将至关重要。