Suppr超能文献

利用图神经网络加速网络布局。

Accelerating network layouts using graph neural networks.

机构信息

Network Science Institute, Northeastern University, Boston, MA, USA.

MIT-IBM Watson AI Lab, IBM Research, Cambridge, MA, USA.

出版信息

Nat Commun. 2023 Mar 21;14(1):1560. doi: 10.1038/s41467-023-37189-2.

Abstract

Graph layout algorithms used in network visualization represent the first and the most widely used tool to unveil the inner structure and the behavior of complex networks. Current network visualization software relies on the force-directed layout (FDL) algorithm, whose high computational complexity makes the visualization of large real networks computationally prohibitive and traps large graphs into high energy configurations, resulting in hard-to-interpret "hairball" layouts. Here we use Graph Neural Networks (GNN) to accelerate FDL, showing that deep learning can address both limitations of FDL: it offers a 10 to 100 fold improvement in speed while also yielding layouts which are more informative. We analytically derive the speedup offered by GNN, relating it to the number of outliers in the eigenspectrum of the adjacency matrix, predicting that GNNs are particularly effective for networks with communities and local regularities. Finally, we use GNN to generate a three-dimensional layout of the Internet, and introduce additional measures to assess the layout quality and its interpretability, exploring the algorithm's ability to separate communities and the link-length distribution. The novel use of deep neural networks can help accelerate other network-based optimization problems as well, with applications from reaction-diffusion systems to epidemics.

摘要

图布局算法在网络可视化中用于揭示复杂网络的内部结构和行为,是当前网络可视化软件所依赖的第一个也是最广泛使用的工具。力导向布局(FDL)算法的计算复杂度很高,使得大型真实网络的可视化变得计算上难以承受,并将大型图困在高能量配置中,导致难以解释的“毛球”布局。在这里,我们使用图神经网络(GNN)来加速 FDL,表明深度学习可以解决 FDL 的两个局限性:它提供了 10 到 100 倍的速度提升,同时生成的布局也更具信息量。我们从理论上推导出 GNN 提供的加速,将其与邻接矩阵特征谱中的异常值数量联系起来,预测 GNN 对于具有社区和局部规则的网络特别有效。最后,我们使用 GNN 生成互联网的三维布局,并引入其他措施来评估布局质量及其可解释性,探索算法分离社区和链路长度分布的能力。深度神经网络的新颖用途也可以帮助加速其他基于网络的优化问题,从反应扩散系统到流行病等应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5446/10030870/467f974cee0a/41467_2023_37189_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验