Suppr超能文献

应用于生物医学的不同形状纳米颗粒在血液中带偶应力 Casson 三杂交纳米流体分数阶模型的传热分析。

Heat transfer analysis of fractional model of couple stress Casson tri-hybrid nanofluid using dissimilar shape nanoparticles in blood with biomedical applications.

机构信息

Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand.

Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand.

出版信息

Sci Rep. 2023 Mar 21;13(1):4596. doi: 10.1038/s41598-022-25127-z.

Abstract

During last decades the research of nanofluid is of great interest all over the World, particularly because of its thermal applications in engineering, and biological sciences. Although nanofluid performance is well appreciate and showed good results in the heat transport phenomena, to further improve conventional base fluids thermal performance an increasing number of researchers have started considering structured nanoparticles suspension in one base fluid. As to make an example, when considering the suspension of three different nanoparticles in a single base fluid we have the so called "ternary hybrid nanofluid". In the present study three different shaped nanoparticles are uniformly dispersed in blood. In particular, the three different shaped nanoparticles are spherical shaped ferric oxide [Formula: see text], platelet shaped zinc [Formula: see text], and cylindrical shaped gold [Formula: see text], which are considered in blood base fluid because of related advance pharmaceutical applications. Accordingly, we focused our attention on the sharp evaluation of heat transfer for the unsteady couple stress Casson tri-hybrid nanofluid flow in channel. In particular, we formulated the problem via momentum and energy equations in terms of partial differential equations equipped with realistic physical initial and boundary conditions. Moreover, we transformed classical model into their fractional counterparts by applying the Atangana-Baleanu time-fractional operator. Solutions to velocity and temperature equations have been obtained by using both the Laplace and the Fourier transforms, while the effect of physical parameters on velocity and temperature profiles, have been graphically analyzed exploiting MATHCAD. In particular, latter study clearly shows that for higher values of volume fraction [Formula: see text] of the nanoparticles the fluid velocity declines, while the temperature rises for the higher values of volume fraction [Formula: see text] of the nanoparticles. Using blood-based ternary hybrid nanofluid enhances the rate of heat transfer up-to 8.05%, spherical shaped [Formula: see text] enhances up-to 4.63%, platelet shaped [Formula: see text] nanoparticles enhances up-to 8.984% and cylindrical shaped gold [Formula: see text] nanoparticles enhances up-to 10.407%.

摘要

在过去的几十年里,纳米流体的研究在全世界引起了极大的兴趣,特别是因为它在工程和生物科学中的热应用。尽管纳米流体的性能在传热现象中得到了很好的评价,并取得了良好的效果,但为了进一步提高常规基液的热性能,越来越多的研究人员开始考虑将结构纳米粒子悬浮在一种基液中。例如,当考虑三种不同的纳米粒子悬浮在一种单一的基液中时,我们就得到了所谓的“三元混合纳米流体”。在本研究中,三种不同形状的纳米粒子均匀地分散在血液中。特别是,三种不同形状的纳米粒子是球形氧化铁[Formula: see text]、板状锌[Formula: see text]和圆柱形金[Formula: see text],由于相关的先进药物应用,它们被认为是血液基液中的纳米粒子。因此,我们专注于评估非稳态偶应力 Casson 三元混合纳米流体在通道中的传热。特别是,我们通过动量和能量方程,以偏微分方程的形式,并配备了现实的物理初始和边界条件来表述这个问题。此外,我们通过应用 Atangana-Baleanu 时间分数算子,将经典模型转化为其分数形式。通过使用拉普拉斯变换和傅里叶变换,我们得到了速度和温度方程的解,同时,利用 MATHCAD 对物理参数对速度和温度分布的影响进行了图形分析。特别是,后者的研究清楚地表明,对于纳米粒子体积分数[Formula: see text]较高的情况,流体速度下降,而对于纳米粒子体积分数[Formula: see text]较高的情况,温度上升。使用基于血液的三元混合纳米流体可将传热速率提高至 8.05%,球形[Formula: see text]可提高至 4.63%,板状[Formula: see text]纳米粒子可提高至 8.984%,圆柱形金[Formula: see text]纳米粒子可提高至 10.407%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c01/10030815/a97909679c55/41598_2022_25127_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验