Suppr超能文献

一种针对通风良好的工作空间的通风预警系统(VEWS),该系统考虑了新冠肺炎及未来大流行的情况。

A ventilation early warning system (VEWS) for diaphanous workspaces considering COVID-19 and future pandemics scenarios.

作者信息

Costa Gonçal, Arroyo Oriol, Rueda Pablo, Briones Alan

机构信息

Human Environment Research (HER), La Salle, Ramon Llull University, Barcelona, Spain.

Noumena, 08019, Barcelona, Spain.

出版信息

Heliyon. 2023 Mar;9(3):e14640. doi: 10.1016/j.heliyon.2023.e14640. Epub 2023 Mar 17.

Abstract

The COVID-19 pandemic has generated new needs due to the associated health risks and, more specifically, its rapid infection rate. Prevention measures to avoid contagions in indoor spaces, especially in office and public buildings (e.g., hospitals, public administration, educational centres, etc.), have led to the need for adequate ventilation to dilute the possible concentration of the virus. This article presents our contribution to this new challenge, namely the Ventilation Early Warning System (VEWS) which has aims to adapt the operation of the current Heating, Ventilating and Air Conditioning (HVAC) systems to the ventilation needs of diaphanous workspaces, based on a Smart Campus Digital Twin (SCDT) framework approach, while maintaining sustainability. Different technologies such as the Internet of Things (IoT), Building Information Modelling (BIM) and Artificial Intelligence (AI) algorithms are combined to collect and integrate monitoring data (historical records, real-time information, and location-related patterns) to carry out forecasting simulations in this digital twin. The generated outputs serve to assist facility managers in their building governance, considering the appropriate application of health measures to reduce the risk of coronavirus contagion in combination with sustainability criteria. The article also provides the results of the implementation of the VEWS in a university workspace as a case study. Its application has made it possible to detect and warn of inadequate ventilation situations for the daily flow of people in the different controlled zones.

摘要

由于新冠疫情带来的健康风险,特别是其快速的感染率,产生了新的需求。避免在室内空间,尤其是办公和公共建筑(如医院、公共管理机构、教育中心等)中传播的预防措施,导致需要进行适当的通风,以稀释病毒可能的浓度。本文介绍了我们对这一新挑战的贡献,即通风预警系统(VEWS),其旨在基于智能校园数字孪生(SCDT)框架方法,使当前的供暖、通风和空调(HVAC)系统的运行适应宽敞工作空间的通风需求,同时保持可持续性。物联网(IoT)、建筑信息模型(BIM)和人工智能(AI)算法等不同技术被结合起来,收集和整合监测数据(历史记录、实时信息和与位置相关的模式),以便在这个数字孪生中进行预测模拟。生成的输出结果有助于设施管理人员进行建筑管理,考虑结合可持续性标准适当应用健康措施,以降低冠状病毒传播的风险。本文还提供了作为案例研究的通风预警系统在大学工作空间实施的结果。其应用使得能够检测并警告不同控制区域内日常人流通风不足的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cc4/10040713/753b8c58893f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验