Suppr超能文献

2024年磁共振引导应用头颈肿瘤分割(HNTS-MRG)挑战赛概述

Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge.

作者信息

Wahid Kareem A, Dede Cem, El-Habashy Dina M, Kamel Serageldin, Rooney Michael K, Khamis Yomna, Abdelaal Moamen R A, Ahmed Sara, Corrigan Kelsey L, Chang Enoch, Dudzinski Stephanie O, Salzillo Travis C, McDonald Brigid A, Mulder Samuel L, McCullum Lucas, Alakayleh Qusai, Sjogreen Carlos, He Renjie, Mohamed Abdallah S R, Lai Stephen Y, Christodouleas John P, Schaefer Andrew J, Naser Mohamed A, Fuller Clifton D

机构信息

Department of Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, Texas, USA.

Department of Imaging Physics, The University of Texas MD Anderson Cancer, Houston, Texas, USA.

出版信息

ArXiv. 2024 Nov 28:arXiv:2411.18585v2.

Abstract

Magnetic resonance (MR)-guided radiation therapy (RT) is enhancing head and neck cancer (HNC) treatment through superior soft tissue contrast and longitudinal imaging capabilities. However, manual tumor segmentation remains a significant challenge, spurring interest in artificial intelligence (AI)-driven automation. To accelerate innovation in this field, we present the Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Challenge, a satellite event of the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. This challenge addresses the scarcity of large, publicly available AI-ready adaptive RT datasets in HNC and explores the potential of incorporating multi-timepoint data to enhance RT auto-segmentation performance. Participants tackled two HNC segmentation tasks: automatic delineation of primary gross tumor volume (GTVp) and gross metastatic regional lymph nodes (GTVn) on pre-RT (Task 1) and mid-RT (Task 2) T2-weighted scans. The challenge provided 150 HNC cases for training and 50 for testing, hosted on grand-challenge.org using a Docker submission framework. In total, 19 independent teams from across the world qualified by submitting both their algorithms and corresponding papers, resulting in 18 submissions for Task 1 and 15 submissions for Task 2. Evaluation using the mean aggregated Dice Similarity Coefficient showed top-performing AI methods achieved scores of 0.825 in Task 1 and 0.733 in Task 2. These results surpassed clinician interobserver variability benchmarks, marking significant strides in automated tumor segmentation for MR-guided RT applications in HNC.

摘要

磁共振(MR)引导的放射治疗(RT)凭借卓越的软组织对比度和纵向成像能力,正在提升头颈癌(HNC)的治疗效果。然而,手动肿瘤分割仍然是一项重大挑战,这激发了人们对人工智能(AI)驱动的自动化技术的兴趣。为了加速该领域的创新,我们举办了“用于MR引导应用的头颈肿瘤分割(HNTS-MRG)2024挑战赛”,这是第27届医学图像计算与计算机辅助干预国际会议的卫星活动。该挑战赛解决了头颈癌领域中大型、公开可用的适合AI的自适应放疗数据集稀缺的问题,并探索了纳入多时间点数据以提高放疗自动分割性能的潜力。参与者应对了两项头颈癌分割任务:在放疗前(任务1)和放疗中期(任务2)的T2加权扫描上自动勾勒原发大体肿瘤体积(GTVp)和大体转移区域淋巴结(GTVn)。挑战赛提供了150例头颈癌病例用于训练,50例用于测试,通过grand-challenge.org使用Docker提交框架进行托管。总共有来自世界各地的19个独立团队通过提交算法和相应论文获得资格,任务1有18份提交,任务2有15份提交。使用平均聚合骰子相似系数进行评估显示,表现最佳的AI方法在任务1中得分为0.825,在任务2中得分为0.733。这些结果超过了临床医生观察者间变异性基准,标志着头颈癌MR引导放疗应用中自动肿瘤分割取得了重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7057/11623708/35a8d3cd6edf/nihpp-2411.18585v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验