Lynes Mackenzie M, Krukenberg Viola, Jay Zackary J, Kohtz Anthony J, Gobrogge Christine A, Spietz Rachel L, Hatzenpichler Roland
Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA.
Environmental Analytical Lab, Montana State University, Bozeman, MT, 59717, USA.
ISME Commun. 2023 Mar 22;3(1):22. doi: 10.1038/s43705-023-00225-9.
Metagenomic studies on geothermal environments have been central in recent discoveries on the diversity of archaeal methane and alkane metabolism. Here, we investigated methanogenic populations inhabiting terrestrial geothermal features in Yellowstone National Park (YNP) by combining amplicon sequencing with metagenomics and mesocosm experiments. Detection of methyl-coenzyme M reductase subunit A (mcrA) gene amplicons demonstrated a wide diversity of Mcr-encoding archaea inhabit geothermal features with differing physicochemical regimes across YNP. From three selected hot springs we recovered twelve Mcr-encoding metagenome assembled genomes (MAGs) affiliated with lineages of cultured methanogens as well as Candidatus (Ca.) Methanomethylicia, Ca. Hadesarchaeia, and Archaeoglobi. These MAGs encoded the potential for hydrogenotrophic, aceticlastic, hydrogen-dependent methylotrophic methanogenesis, or anaerobic short-chain alkane oxidation. While Mcr-encoding archaea represent minor fractions of the microbial community of hot springs, mesocosm experiments with methanogenic precursors resulted in the stimulation of methanogenic activity and the enrichment of lineages affiliated with Methanosaeta and Methanothermobacter as well as with uncultured Mcr-encoding archaea including Ca. Korarchaeia, Ca. Nezhaarchaeia, and Archaeoglobi. We revealed that diverse Mcr-encoding archaea with the metabolic potential to produce methane from different precursors persist in the geothermal environments of YNP and can be enriched under methanogenic conditions. This study highlights the importance of combining environmental metagenomics with laboratory-based experiments to expand our understanding of uncultured Mcr-encoding archaea and their potential impact on microbial carbon transformations in geothermal environments and beyond.
宏基因组学研究在近期关于古菌甲烷和烷烃代谢多样性的发现中占据核心地位。在此,我们通过将扩增子测序与宏基因组学及中宇宙实验相结合,对黄石国家公园(YNP)陆地地热特征中的产甲烷菌群进行了调查。甲基辅酶M还原酶亚基A(mcrA)基因扩增子的检测表明,编码Mcr的古菌具有广泛的多样性,它们栖息于YNP中具有不同物理化学条件的地热特征区域。从三个选定的温泉中,我们获得了12个编码Mcr的宏基因组组装基因组(MAG),这些基因组隶属于已培养产甲烷菌的谱系以及候选(Ca.)甲基甲烷菌属、候选冥古菌属和古球状菌属。这些MAG编码了氢营养型、乙酸裂解型、氢依赖型甲基营养型产甲烷作用或厌氧短链烷烃氧化的潜力。虽然编码Mcr的古菌在温泉微生物群落中占比很小,但用产甲烷前体进行的中宇宙实验刺激了产甲烷活性,并使与甲烷八叠球菌属、嗜热栖热菌属以及包括候选泉古菌属、候选哪吒古菌属和古球状菌属在内的未培养编码Mcr古菌的谱系得到了富集。我们发现,具有从不同前体产生甲烷代谢潜力的多种编码Mcr古菌存在于YNP的地热环境中,并且在产甲烷条件下可以富集。这项研究强调了将环境宏基因组学与基于实验室的实验相结合的重要性,以扩展我们对未培养编码Mcr古菌及其在地热环境及其他环境中对微生物碳转化潜在影响的理解。